
Testing for structural change in the predictability of asset
returns.

Luis M. Viceira1

This draft: April 1997

1Harvard Business School, Boston MA 02163 and NBER. Email lviceira@hbs.edu. The author is grateful
for invaluable comments, suggestions and discussions with John Y. Campbell, James H. Stock and Jonathan
H. Wright, and for comments from Guido Imbens, Ken Snowden and participants in the Harvard Finance
and Econometrics Workshops. The author gratefully acknowledges the financial support of the Bank of
Spain and also La Caixa Fellowship, under whose support an earlier version of this paper was written.



Abstract

There is growing empirical evidence that expected returns on financial assets are time-
varying. Moreover, the evidence calls for highly persistent expected returns. Testing for
time-varying, persistent expected returns requires the computation of returns over long-
horizons and so the use of long time series to have as many independent, non-overlapping
observations as possible. When testing hypotheses using long time series, the researcher
always faces the risk of structural changes that invalidate any inference based on full sam-
ple estimators. This paper tests for structural change in the model generating expected
stock returns. To do so we develop some asymptotic results on the asymptotic distribu-
tion of recursive, reverse-recursive and sequential least squares estimators under general
conditions of heteroscedasticity and autocorrelation. We apply these results to fluctuation
tests based on the most frequently statistics used in the literature to measure persistence
in expected stock returns. Finally, we pursue an empirical exercise with data on the US
stock market, and we find that the higher equity premium in the post-World War II period
is also associated with a structural break in the stochastic structure generating expected
returns, towards more univariate persistence in expected stock returns. However, we do not
find evidence of a structural break in the forecasting relation between log dividend yields
and log returns at a one-month horizon. Moreover, conditional on structural stability, the
full-sample statistical evidence on this forecasting relation dos not reject the null hypothe-
sis that the log dividend yield does not forecast one-month log returns, once we take into
account the highly persistent nature of the process for the log dividend yield.

JEL classification: C12, C22, G12,.

Keywords: Time-varying expected returns, structural change, recursive estimators, variance-
ratio, long-horizon regressions.



1 Introduction

During the last decade there has been abundant empirical research on the predictability, or
“mean-reversion”, properties of stock returns. This research has focused either on the serial
correlation of stock returns (Poterba and Summers 1988, Fama and French 1988a) or on
the predictability of returns from variables other than past returns, particularly financial
ratios such as the the dividend-price ratio (Campbell and Shiller 1988a-b, Fama and French
1988b, 1989) or the book-to-market ratio (Kothari and Shanken 1995), and stochastically
detrended short-term interest rates (Campbell, Lo and Mackinlay 1997). A common feature
of this research is the use of overlapping multiperiod (or long-horizon) returns to analyze
time-variation in expected returns, which requires the use of long-time time series of returns
to have as many independent observations as possible.

Overall this literature concludes there is weak evidence about univariate predictability
in stock returns (Fama and French, 1988a, Richardson and Stock 1989), but the evidence
about multivariate predictability is stronger (Campbell, Lo and MacKinlay, 1997). However,
these conclusions are far from going unchallenged, because they depend on the sample
period researchers use to test for predictability. For the U.S. experience, the evidence on
predictability varies depending on whether the pre-WWII years are included in the sample
or not. While the tests for univariate mean-reversion indicate that the effect seems to be
concentrated around the Great-Depression and is almost non-existent after WWII (Fama
and French 1988, Kim, Nelson and Startz, 1991, Poterba and Summers 1988), the evidence
about multivariate predictability is the opposite, i.e., the statistical evidence is stronger after
WWII (Campbell, Lo and MacKinlay 1997, ). Campbell (1997) shows that predictability
is also present in a sample of international stock markets in the last 25 years.

Thus, the available empirical evidence about the existence of predictability in stock
returns suggests that an stability analysis may help clarify the issues at hand. As Fama
and French (1988a, p. 266) have noted, ”(a)utocorrelation may reflect inefficiency or time-
varying equilibrium expected returns generated by rational investor behavior. Neither view
suggest, however, that patterns of autocorrelation should be stable for a sample period as
long as 60 years (...). Stationary price components may be less important after 1940, or
perhaps prices no longer have such temporary components. Resolution of this issue will
require more powerful statistical techniques”. The main aim of this paper is to develop and
apply an asymptotic theory that helps us to discern whether temporal instability charac-
terizes the behavior of long-horizon stock returns or, by contrast, the differences we observe
in the data across periods are merely due to sampling variability rather than time-variation
of the true process generating predictability (or absence of) in stock returns. Moreover, we
want to test whether the parameters of a particular model that generates expected returns
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are constant over time, without conditioning on a particular null hypothesis about the true
value of those parameters. That is, we want to separate the issue of stability from the
issue of predictability. The advantage of disentangling both hypotheses is obvious: If we do
not reject the null hypothesis that the model generating expected returns is constant over
time, we can then use the full sample of stock returns to test any null hypothesis about the
parameters of the model–for example, if the parameters are such that expected returns are
constant–, hence increasing the power of the tests for this null.

To do that we use recursive computations of the statistics most widely used in the lit-
erature on predictability in stock returns. By defining our statistics in terms of deviations
of the recursive estimates with respect to full sample estimates–“fluctuation tests” à la
Ploberger-Krämer-Kontrus (1989)–we are able to separate the issue of testing for stability
from that of testing for the existence of predictability in returns. However, the compounding
nature of multiperiod returns induces an spurious autocorrelation in long-horizon returns
that invalidate the use of standard results on the distribution of the recursive estimators of
univariate mean-reversion statistics. Hence we develop some theoretical results on the as-
ymptotic distribution of recursive and reverse-recursive estimators of these statistics, under
general structures of autocorrelation and heteroskedasticity, using the approach to infer-
ence with multiperiod returns in Richardson and Stock (1989). We find these estimators
are continuous functionals of standard Brownian processes in the unit interval.

Testing for stability and predictability in multivariate models present some additional
problems. There is considerable evidence that shocks to the log dividend yield, the stock
return predictor most often used in the literature, are highly persistent and negatively cor-
related with shocks to stock returns (see, for example, Campbell and Viceira 1996). Elliott
and Stock (1994) have shown that standard inference procedures based on the assumption
that regressors are stationary may lead to over-rejections of the null hypothesis in signifi-
cance tests when the explanatory variables in the regression equation contain local-to-unity
roots. They develop an alternative asymptotic theory for this case based on the theory
of nearly integrated processes of Chan and Wei (1987), Phillips (1987) and Stock (1991).
We apply their theory to test for predictability in stock returns from the log dividend
yield, and extend it to find the limiting representation of the OLS recursive and reverse-
recursive estimators of the slope in this predictive relationship when the regressors are
endogenous and have roots local-to-unity2. We find that these estimators are continuous
functionals of Ornstein-Uhlenbeck processes and standard Brownian Motion processes in
the unit interval. We also use these results to find the limiting distribution of the recursive
and reverse-recursive fluctuation statistics and the sequential QLR statistic (Quandt 1960,
Stock 1994) we use in our empirical analysis. For the QLR statistic, we also find evidence

2Wright (1996) has derived the asymptotic distribution of some leading stability tests when the regressors
are nearly integrated but strictly exogenous.
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that its asymptotic distribution is robust to regressor endogeneity.

The main empirical results of the paper are the following. When we apply our stability
tests to monthly log real returns, log excess returns and dividends of the CRSP portfolio
including all traded securities in the NYSE-AMEX-NASDAQ markets from 1926 through
1995, we find some statistical evidence against the null hypothesis of structural stability in
the univariate process for stock returns but no evidence against this null in the regression
equation that relates dividend yields to expected future stock returns. The evidence calls
for a structural break in the mid 70’s towards univariate predictability in returns. There is
also some weak evidence of a possible structural break around the 50’s.

Conditional on the null of structural stability, we also find some evidence of non-zero
autocorrelation in stock returns, corroborating earlier evidence by Richardson and Stock
(1989) for the period ending in 1985. This evidence is stronger in returns on the equally-
weighted portfolio than in returns on the value-weighted portfolio, and stronger in log excess
returns than in log real returns. However, while under conventional asymptotics there
is some evidence of predictability in one-month log returns (specially in equally-weighted
returns) from the log dividend yield, there is none under local-to-unity asymptotics.

This paper is organized as follows. Section 2 outlines the statistics on which our empirical
analysis is based, and develops their limiting distributions. In section 3 we discuss Monte
Carlo evidence on the behavior of these distribution. Section 4 reports and discusses the
empirical results of this paper. Finally, section 5 concludes.

2 Assessing the Stability of Predictability in Asset Returns

2.1 The statistics of interest

Our stability tests are based on three of the most widely used statistics in the recent
literature on the predictability of asset returns: The variance ratio statistic of Poterba
and Summers (1988) and Lo and MacKinlay (1988), the univariate Fama-French (1988a)
regression statistic, and the multivariate regression statistic of Campbell and Shiller (1988)
and Fama and French (1988b, 1989). Both the variance ratio and the univariate Fama-
French regression statistic test for univariate predictability in stock returns, focusing on the
ability of past returns to predict future returns.

The variance ratio statistic vr(k) is the sample counterpart of the ratio of the variance
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of k-period log returns per unit of time to the variance of one-period returns:

V R (k) =
Var(rkt )
k Var(rt)

, (1)

where rkt denotes the log asset return over the last k periods, which obtains by accumulating
the last k one-period log returns, i.e., rkt =

Pk−1
i=0 rt−i, and rt+1 is the one-period log

return, rt+1 = log(Pt+1+Dt+1)−log(Pt). The univariate mean-reversion regression statistic
proposed by Fama and French (1988) is the OLS estimate b(k) of the slope in the regression
equation

rkt+k = α (k) + β (k) rkt + ukt+k . (2)

If one-period returns are uncorrelated, we have V R(k) = 1 and β(k) = 0.

When the horizon k is fixed relative to T , both vr(k) and b(k) converge in probability
to V R(k) and β(k) and have asymptotic gaussian distributions under the null hypothesis
of uncorrelated returns. However, Lo and MacKinlay (1988, 1989) have shown that these
asymptotic distributions perform poorly in small samples. By contrast, Richardson and
Stock (1989) have shown that large-sample representations of full sample estimators of
long-horizon return statistics based on varying horizons k such that k/T → δ, where δ is
fixed and non-zero asymptotically, provide better approximations to sampling distributions
than those based on fixed k, though they are not gaussian, but functionals of Brownian
Motion processes defined in the unit interval. This approach is also particularly useful to
find the asymptotic distribution of the recursive estimators of these statistics.

Campbell (1991) has shown that it is possible for expected returns to be time-varying
and realized returns to be serially uncorrelated. The multivariate tests that look for pre-
dictability in returns consider variables other than the own lagged returns. Hence they test
the statistical significance of the vector of slopes in the regression equation of rkt+k onto
xt, a set of observable variables that may predict returns. We will focus on this regression
equation when k = 1,

rt+1 = α0 + α1
0xt + εt+1. (3)

Testing for stability and predictability of expected returns in the multivariate predic-
tive model (3) presents some econometric problems. There is considerable evidence that
shocks to the log dividend yield, the stock return predictor most often used in the litera-
ture, are highly persistent and negatively correlated with shocks to stock returns–see, for
example, Campbell and Viceira (1996). Elliott and Stock (1994) have shown that standard
inference procedures based on the assumption that regressors are stationary may lead to
over-rejections of the null hypothesis in significance tests when the explanatory variables in
the regression equation contain local-to-unity roots. They develop an alternative asymp-
totic theory for this case based on the theory of nearly integrated processes of Chan and Wei
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(1987), Phillips (1987) and Stock (1991). We also compute the asymptotic distributions of
our stability tests assuming up front that xt is a nearly-integrated process whose innovations
are possibly contemporaneously correlated with the innovations in stock returns.

2.2 Stability tests

Our stability tests are based on both recursive and reverse-recursive estimators of the sta-
tistics of interest. When we deal with non-recursive estimation, we perform a unique sig-
nificance test for the parameters of the model, based on the entire sample estimation of the
model. However, in the case of recursive estimation, we want to perform a simultaneous
test over the whole sequence of recursive estimates of the parameters of the model, for
which we need to find the distribution of the ”plot” of recursive estimates. A recursive
estimate of a certain parameter is given by the sequence of estimates of that parameter
computed over the sequence of increasing subsamples t = {1, 2, ..., [Tλ] : 0 < λ0 ≤ λ ≤ 1},
where T is the sample size, [Tλ] denotes the largest integer that is less than or equal to
T · λ –the greatest lesser function–and λ0 is a trimming parameter. A reverse-recursive
estimator is computed in analogous manner, with the sequence of subsamples given by
t = {[Tλ], ..., T : 0 < λ ≤ λ0 ≤ 1}.

We are going to focus on two types of stability tests. The first type of tests are fluctuation
tests à la Ploberger-Krämer-Kontrus (1989) in which the stability tests is performed on
a properly scaled version of the absolute differences between the recursive–or reverse-
recursive– estimates and the full sample estimate of the parameters of interest . The
scaling factor is chosen as to have asymptotic distributions that do not depend on unknown
parameters. The main advantage of this procedure is that we do not need to impose a priori
any null hypothesis about the value of the parameters of interest, and we only test whether
they are constant or not.

We consider fluctuation tests based on both recursive and reverse-recursive estimators.
The reason is that recursive estimation requires to choose a trimming parameter λ0, i.e.
a number of initial observations for the first recursion large enough to have a meaningful
first estimation. The cost of this choice is that we lose any opportunity to detect breaks
early in the sample. In our case, this cost is particularly high, since even using overlapping
observations, regressions with long-horizon returns require a relatively large number of
initial observations. But in our empirical application these observations correspond to
those of the Great Depression period which, a priori, we expect it to play an important
role in any stability analysis of long-horizon stock returns in the US. To solve this trade-off,
Banerjee, Lumsdaine and Stock (1992) propose to use reverse recursions, i.e. to estimate
recursively the statistics of interest by going backwards instead of forward.
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The second type of test we consider is Quandt’s (1960) Likelihood Ratio (QLR) test,
which selects the maximal Chow-Wald test for structural break over a sequence of dates.
Stock (1994) derives the asymptotic distribution of the QLR test when regressors are station-
ary and strictly exogenous, and Wright (1996) does it when regressors are nearly integrated
processes and strictly exogenous. We derive its distribution under the assumption that
regressors are nearly integrated processes and endogenous.

Most of the standard asymptotic results for recursive estimators are built under the joint
null hypothesis that the parameters in the regression model are stable over time, the re-
gressors are stationary and exogenous, and the disturbances are either martingale difference
sequences or i.i.d. sequences. However, in the univariate regression test, the disturbance
term is known to be autocorrelated up to order k and possibly heteroskedastic even under
the null of no predictability, due to compounding in multi-period returns. Moreover, the
regressor is endogenous. In the multivariate regression test, regressors are also endogenous
and highly persistent. These problems prevent us from using standard results on the dis-
tribution of recursive estimators in the previous literature, and force us to look for the
asymptotic distribution of the stability tests based on these statistics. The following two
section present those distributions.

2.3 Asymptotic representation of the recursive and reverse-recursive vari-
ance ratio and Fama-French univariate regression statistics

The sequence of subsamples for which we compute recursive estimators is t = {(1, 2, ..., [Tλ]) :
0 < λ0 ≤ λ ≤ 1}, and the sequence of subsamples for which we compute reverse-recursive
estimators is t = {([Tλ], ..., T ) : 0 < λ ≤ λ0 ≤ 1}, where T is the sample size, [Tλ] denotes
the largest integer that is less than or equal to T · λ and λ0 is a trimming parameter.

We assume throughout this section that:

(A1) rt admits the following representation:

rt = µ+Ψ (L) εt,

where µ is constant, Ψ(L) =
P∞

s=0 ψsεt−s,
P∞

s=0 s|ψs| < ∞, Ψ (1) 6= 0 and {εt} is a
martingale difference sequence (m.d.s.) withE[ε2t |εt−1, ...] = σ2t > 0, limT→∞E[T−1

P∞
t=1 σ

2
t ] =

E[ε2t ] = σ2ε <∞, E[ε4t |εt−1, ...] = µ4 <∞ and E[r20] <∞.
(A2) The return horizon k is such that limT→∞ k/T = δ.
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(A3) The recursive estimator of the sample mean and variance of one-period log returns
converges in probability uniformly in λ to the unconditional mean and variance:

µ (1, Tλ) =
1

[Tλ]

[Tλ]X
t=1

rt → µ,

γ0 (1, Tλ) =
1

[Tλ]

[Tλ]X
t=1

(rt − µ (1, Tλ))2 → γ0,

where → denotes convergence in probability and γ0 =Var(rt) denotes the uncondi-
tional variance of the one-period log return.

(A3’) The reverse-recursive estimator of the sample mean and variance of one-period log
returns converges uniformly in (1− λ) to the unconditional mean and variance:

µr (1, Tλ) =
1

[T (1− λ)] + 1

TX
t=[Tλ]

rt → µ.

γr0 (1, Tλ) =
1

[T (1− λ)] + 1

TX
t=[Tλ]+1

(rt − µr (1, Tλ))2 → γ0.

Assumption (A1), which follows Stock (1994), states that one-period log returns admit
an invertible moving average representation whose innovations εt follow a martingale dif-
ference sequence process. That is, εt is a mean-zero uncorrelated process. It allows εt to be
conditionally heteroskedastic as long as it is unconditionally homoskedastic and its fourth
moment exists and it is finite. These are the weakest possible restrictions on rt so that
(rt − µ) –or rt minus any consistent estimator for µ–obeys the Functional Central Limit
Theorem (FCLT) for general I(0) processes (Stock, 1994). For ease of reference, we state
this result as a Lemma:

Lemma 1 (FCLT for I(0) processes) Under assumption (A1), T−1/2 times the partial
sums of demeaned one-period returns obey the Functional Central Limit Theorem (FCLT)
for general I(0) processes. That is, they converge in distribution to a univariate standard
Brownian Motion process in the unit interval:r

1

T

[Tv]X
t=1

(rt − µ)⇒ V 1/2Wr (v) ,
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where ⇒ denotes weak convergence or convergence in distribution and Wr (•) denotes a
univariate standard Brownian Motion in the unit interval and V = limT→∞Var (

PT
t=1 rt) =

Ψ(1)2σ2� –or 2π times the spectral density of rt at frequency zero.

Proof. See Stock (1994).

Assumption (A2) emphasizes that k, the horizon return, is not fixed in this approach,
but it increases with T at a rate such that k/T remains constant. This approach has the
following implication for the limiting distribution of the k-horizon log return:

Lemma 2 From Lemma 1, assumption (A2) and the Continuous Mapping Theorem (CMT),r
1

T

³
r
([Tδ])
[Tv] − [Tδ]µ

´
⇒ V 1/2 [W (v)−W (v − δ)] ,

where r([Tδ])[Tv] =
P[Tδ]−1

i=0 r[Tv]−i .

Proof. See Appendix A.

We can now state the main results in this section.

Definition 1 Define the recursive estimator of the variance ratio for [Tδ]-horizon log re-
turns as

vr (Tδ, Tλ) =

P[Tλ]
t=[Tδ]

h
r
([Tδ])
t − [Tδ]µ (1, Tλ)

i2
[Tδ]

P[Tλ]
t=1 [rt − µ (1, Tλ)]2

,

where δ ≤ λ0 ≤ λ ≤ 1 and µ(1, Tλ) = (P[Tλ]
t=1 rt)/[Tλ].

The following proposition gives us the limiting distribution of this recursive statistic.

Proposition 1 Under assumptions (A1)—(A3), vr(Tδ, Tλ) has the following limiting rep-
resentation:

vr (Tδ, Tλ) ⇒ V

γ0
V R (δ, λ) (4)

=
V

γ0

1

δλ

Z λ

δ

∙
Wr (v)−Wr (v − δ)− δ

λ
Wr (λ)

¸2
dv,

8



where δ ≤ λ0 ≤ λ ≤ 1, γ0 is the unconditional variance of rt and V is 2π times the spectral
density of rt at frequency zero. When λ = 1 and rt is uncorrelated, so that V = γ0, the
limiting distribution for the full sample estimator of the variance ratio in Richardson and
Stock (1989) obtains.

Proof. See Appendix A.

Corollary 1 Proposition 1 and the Continuous Mapping Theorem (CMT) imply the fol-
lowing limiting distribution for the maximal absolute fluctuation of the recursive variance
ratio statistic relative to its full-sample estimate:

max
λ0≤λ≤1

¯̄̄̄
vr (Tδ, Tλ)− vr (Tδ, T )

vr (Tδ, T )

¯̄̄̄
⇒ sup

λ0≤λ≤1

¯̄̄̄
V R (δ, λ)− V R (δ, 1)

V R (δ, 1)

¯̄̄̄
. (5)

Proof. In Proposition 1 we have shown that vr(Tδ, T ·) has a limiting representation as
a random function in C[0, 1]. Since both max{·} and ÷ define continuous functionals, the
result in the corollary follows immediately from the CMT (see proof of Lemma 2).

Proposition 1 shows that the variance-ratio statistic has an asymptotic representation as
a functional of a Brownian Motion process in the unit interval. However, this distribution
depends on the autocorrelation properties of one-period returns, as summarized by V .
By contrast, Corollary 1 shows that percentage deviations of the recursive estimator of
the variance ratio from the full sample estimator have an asymptotic distribution that
do not depend on any unknown parameter and it is independent of the autocorrelation
properties of stock returns. This allows us to test for the null hypothesis of stability without
imposing any null hypothesis on the mean-reversion properties of returns. [vr(Tδ, Tλ) −
vr(Tδ, T )]/vr(Tδ, T ) is analogous to the fluctuation test proposed by Ploberger, Krämer
and Kontrus (1989), where the scaling factor is vr(Tδ, T ). Hence the name “fluctuation
statistic” we apply to the argument of the maximal operator in (5). Our empirical results
will be based on this statistic.

We now define the reverse-recursive estimator of the variance ratio statistic and charac-
terize its asymptotic distribution.

Definition 2 Define the reverse-recursive estimator of the variance ratio for [Tδ]-horizon
log returns as

vrr (Tδ, Tλ) =

PT
t=[Tλ]

h
r
([Tδ])
t − [Tδ]µr (1, T (λ− δ))

i2
[Tδ]

PT
t=[T (λ−δ)]+1 [rt − µr (1, T (λ− δ))]2

,
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where δ ≤ λ ≤ λ0 ≤ 1 and µr(1, T (λ− δ)) = (
PT

t=[T (λ−δ)]+1 rt)/[T (1− λ+ δ)].

Proposition 2 Under assumptions (A1)—(A4’), vrr(Tδ, Tλ) has the following limiting rep-
resentation:

vrr (Tδ, Tλ) ⇒ V

γ0
V Rr (δ, λ) (6)

=
V

γ0

1

δ (1− λ+ δ)

Z 1

λ

½
Wr (v)−Wr (v − δ)− δ

1− λ+ δ
[Wr (1)−Wr (λ− δ)]

¾2
dv,

where δ ≤ λ ≤ λ0 ≤ 1, γ0 is the unconditional variance of rt and V is 2π times the spectral
density of rt at frequency zero.

Proof. See Appendix A.

Corollary 2 Proposition 2 and the CMT imply the following limiting distribution for the
maximal absolute fluctuation of the reverse-recursive variance ratio statistic relative to its
full-sample estimate:

max
δ≤λ≤λ0

¯̄̄̄
vrr (Tδ, Tλ)− vr(Tδ, T )

vr(Tδ, T )

¯̄̄̄
⇒ sup

δ≤λ≤λ0

¯̄̄̄
V Rr (δ, λ)− V R (δ, 1)

V R (δ, 1)

¯̄̄̄
. (7)

Proof. The proof follows the same lines as the proof of Corollary 1.

The results for the reverse-recursive estimator for the variance ratio statistic are anal-
ogous to those for the recursive variance ratio statistic. Nevertheless, it is important to
emphasize that a reverse-recursive statistic is not redundant with respect to a recursive
statistic but a useful complement, since it helps to detect structural breaks in the early part
of the sample which a recursive estimator misses because the first recursive estimate uses
the first [Tλ0] observations.

We now turn to the limiting distributions of the recursive and reverse-recursive estimates
of the Fama-French regression statistic for univariate predictability in asset returns.

Definition 3 Let b(Tδ, Tλ) denote the OLS recursive estimator of β(δ) in

r
(Tδ)
t = α(δ) + β(δ)r

[Tδ]
t−[Tδ] + u

[Tδ]
t . (8)
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We define the recursive h.a.c. fluctuation t-statistic as

t (Tδ, Tλ) =

√
T [b (Tδ, Tλ)− b (Tδ, T )]p

Q (Tδ, Tλ)Ω (Tδ, T )Q (Tδ, Tλ)
,

where 2δ ≤ λ0 ≤ λ ≤ 1, Q(Tδ, Tλ)−1 = ([Tλ]−2[Tδ]+1)−1P[Tλ]
t=2[Tδ]

h
r
[Tδ]
t−[Tδ] − µ−[Tδ](Tδ, Tλ)

i2
,

µ−[Tδ](Tδ, Tλ) is the recursive arithmetic mean of r
[Tδ]
t−[Tδ] (see Appendix A), and Ω(Tδ, T )

is a heteroskedasticity and autocorrelation consistent (h.a.c.) full-sample estimator of Ω =
limT→∞Var (

PT
t=1 zt), where zt = r

[Tδ]
t−[Tδ]bu[Tδ]t and bu[Tδ]t are the full-sample OLS residuals

from (8).

Proposition 3 Under assumptions (A1)-(A3), b(Tδ, Tλ) has the following asymptotic dis-
tribution,

b(Tδ, Tλ) ⇒ β (δ, λ) (9)

=

R λ
2δ

£
Wr (v − δ)−Wr (v − 2δ)− µ−δ (δ, λ)

¤
[Wr (v)−Wr (v − δ)− µ (δ, λ)] dvR λ

2δ

£
Wr (v − δ)−Wr (v − 2δ)− µ−δ (δ, λ)

¤2
dv

,

and T−1t(Tδ, Tλ),

1

T
t(Tδ, Tλ)⇒ t(δ, λ) =

1

λ− 2δ
β (δ, λ)− β (δ, 1)p

Q (δ, λ)Ω (δ, 1)Q (δ, λ)
, (10)

where 2δ ≤ λ0 ≤ λ ≤ 1, and µ(δ, λ), µ−δ(δ, λ), Q(δ, λ) and Ω(δ, 1), given Appendix A, are
functionals of standard Brownian Motion processes and they do not depend on any unknown
parameter. The limiting distribution of the full-sample estimator b(Tδ, T ) in Richardson and
Stock (1989) obtains from (9) for λ = 1.

Proof. See Appendix A.

Proposition 3 shows that, under the k/T → δ approach, the limiting distribution of the
recursive OLS estimator of β(δ) in the Fama-French univariate regression model (8) does not
depend on any unknown parameters. Moreover, it does not depend on the autocorrelation
properties of rt, since (9) is not a function of V . This result is convenient to test for
structural stability, because it allows us to formulate the stability test in terms of b(Tδ, Tλ)−
b(Tδ, T ), with no need of a scaling factor. However, since both under the null hypothesis
of no autocorrelation in rt and the alternative of non-zero autocorrelation, the full sample
estimator b(Tδ, T ) has the same limiting distribution, one might be tempted to conclude
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that the k/T → δ approach of Richardson and Stock (1989) is not adequate to test for
univariate predictability in returns..

To gain intuition on why the distribution of the estimator does not depend on the
autocorrelation properties of one-period returns, it is useful to write the alternative repre-
sentation of the slope in (8) in terms of one-period log return autocorrelations under the
fixed-horizon approach (Kim, Nelson, Startz, 1991):

β (k) =

Pk
j=1 jρj +

Pk−1
j=1 (k − j)ρk+j

k + 2
Pk

j=1 ρj
, (11)

where ρj is the jth.-order autocorrelation coefficient of rt. Under the fixed-horizon approach,
β(k) = 0 when rt is uncorrelated and, if rt is autocorrelated and covariance stationary,
β(k) 6= 0 for low order horizons, but it approaches zero as the horizon becomes very large,
since the numerator of (11) approaches a fixed limit but the denominator grows without
bound. Hence, under both the null of no mean-reversion and the alternative of mean-
reversion, β(k) has the same limiting representation when k → ∞. This is what happens
under the k/T → δ approach, because we allow the horizon k = [Tδ] → ∞ as T → ∞.
However, the point that Richardson and Stock (1989) made convincingly is that the k/T → δ
approach behaves much better in small samples than the fixed-horizon approach does. They
showed that, under the k/T → δ approach, convergence is achieved even for very low values
of T , which translates into large gains in terms of size of the tests in finite samples.

It is interesting to note that the OLS recursive t-statistic itself diverge. It is Op(T ),
while the OLS recursive estimator of the slope is Op(1). The distribution of T−1 times
the recursive t-statistic does not depend on any unknown parameter either. However, it is
computationally much more involved than the distribution of the slope. From this point
of view, b(Tδ, Tλ) is more suitable than t(Tδ, Tλ) to test for stability. We will use the
maximum absolute deviations of b(Tδ, Tλ) from b(Tδ, T ) as the basis for our empirical
analysis. The distribution of this fluctuation statistic is given in the following corollary.

Corollary 3 Proposition 3 and the CMT imply the following limiting distribution for the
maximal absolute fluctuation of the recursive Fama-French regression statistic relative to its
full-sample estimate:

max
λ0≤λ≤1

|b(Tδ, Tλ)− b(Tδ, T )|⇒ sup
λ0≤λ≤1

|β(δ, λ)− β(δ, 1)| . (12)

Proof. The proof follows the same lines as the proof of Corollary 1.

12



Definition 4 Let br(Tδ, Tλ) denote the OLS reverse-recursive estimator of β(δ) in (8).
We define the reverse-recursive h.a.c. fluctuation t-statistic as

tr (Tδ, Tλ) =

√
T [br (Tδ, Tλ)− b (Tδ, T )]p

Qr (Tδ, Tλ)Ω (Tδ, T )Qr (Tδ, Tλ)
,

where 2δ ≤ λ ≤ λ0 ≤ 1, Qr(Tδ, Tλ)−1 = ([T (1−λ)]+1)−1PT
t=[Tλ]

h
r
[Tδ]
t−[Tδ] − µr−[Tδ](Tδ, Tλ)

i2
,

µr−[Tδ](Tδ, Tλ) is the reverse-recursive arithmetic mean of r
[Tδ]
t−[Tδ] (see Appendix A), and

Ω(Tδ, T ) is a h.a.c. full-sample estimator of Ω–which is defined in Proposition 3.

Finally, we characterize the asymptotic behavior of the reverse-recursive estimator of
β(δ).

Proposition 4 Under assumptions (A1)-(A3), br(Tδ, Tλ) has the following stochastic limit,

br(Tδ, Tλ)⇒ βr (δ, λ) (13)

=

R 1
λ

£
Wr (v − δ)−Wr (v − 2δ)− µr−δ (δ, λ)

¤
[Wr (v)−Wr (v − δ)− µr (δ, λ)] dvR 1

λ

£
Wr (v − δ)−Wr (v − 2δ)− µr−δ (δ, λ)

¤2
dv

,

and T−1tr(Tδ, Tλ),

1

T
tr (Tδ, Tλ)⇒ tr(δ, λ) =

1

1− λ

βr (δ, λ)− β (δ, 1)p
Qr (δ, λ)Ω (δ, 1)Qr (δ, λ)

, (14)

where µr(δ, λ), µr−δ(δ, λ), Q
r(δ, λ) and Ω(δ, 1), given Appendix A, are functionals of Brown-

ian Motion processes and they do not depend on any unknown parameter.

Proof. See Appendix A.

Corollary 4 Proposition 4 and the CMT imply the following limiting distribution for the
maximal absolute fluctuation of the recursive Fama-French regression statistic relative to its
full-sample estimate:

max
2δ≤λ≤λ0

|br(Tδ, Tλ)− b(Tδ, T )|⇒ sup
2δ≤λ≤λ0

|βr(δ, λ)− β(δ, 1)| . (15)

Proof. The proof follows the same lines as the proof of Corollary 1.
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2.4 Asymptotic representation of recursive and reverse-recursive statis-
tics in the dividend-price ratio regression

We are interested in the limiting distribution of the OLS recursive, reverse-recursive and
full-sample estimators of the slope in the regression model,

rt = α0 + α1xt−1 + εt, (16)

where rt is the one-period log return and xt is a predictor variable (such as the log dividend-
price ratio or the book-to-market ratio). We are going to assume throughout this section
that:

(B1) {εt} is a martingale difference sequence (m.d.s.) with E[ε2t |εt−1, ...] = σ2ε,t > 0,
limT→∞E[T−1

P∞
t=1 σ

2
ε,t] = E[ε2t ] = σ2ε <∞, E[ε4t |εt−1, ...] <∞ and E[r20] <∞.

(B2) xt admits the following representation as a local-to-unity process:

xt = φxt−1 + ηt, (17)

where φ = 1 + c/T , c < 0, and {ηt} is a m.d.s. with E[η2t |ηt−1, ...] = σ2η,t > 0,
limT→∞E[T−1

P∞
t=1 σ

2
η,t] = E[η2t ] = σ2η <∞, E[η4t |ηt−1, ...] <∞ and E[x20] <∞.

(B3) Innovations in rt and xt are contemporaneously correlated: E [εtηt] = σεη 6= 0.

Assumption (B1) imposes the weakest possible restrictions on the innovations in (16)
that allow us to obtain the asymptotic distributions of the recursive estimators that follow.
In particular, it ensures that εt verifies the FCLT (see Lemma 1), so

P[Tv]
t=1 εt ⇒ σeWr(v).

Assumption (B2) allows for high persistence in the predictor variable xt by assuming that φ,
the autorregressive root in (17), is local to unity, while assumption (B3) allows xt not to be
strictly exogenous, but with innovations correlated with innovations in log returns3. Both
persistence and non-zero correlation with log returns are observed in typical regressions
of log returns onto the log dividend price ratio–see, for example, Campbell and Viceira
(1996).

Under assumption (B2) we have that T−1/2xt itself, rather than the accumulated sum
of xt, converges to ση times a diffusion process (Phillips, 1987). We state this result as a
Lemma for ease of reference.

3Wright (1996) has considered the asymptotic distribution of some leading structural stability tests when
the regressors have roots near to unity, but they are strictly exogeneous.
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Lemma 3 (FCLT for near integrated processes) Under assumption (B2), T−1/2 times
xt obeys the FCLT for near-integrated processes. That is, it converges in distribution to a
diffusion process: r

1

T
x[Tv] ⇒ σηJc (v) ,

where Jc(•) denotes a 1-dimensional Ornstein-Uhlenbeck process, i.e., Jc(v) is the solution
to the stochastic differential equation dJc(v) = cJc(v)dv+dWη(v), whereWη(•) is a standard
Brownian Motion process in the unit interval.

Proof. See Phillips (1987, Lemma 1) and Stock (1994, Example 4).

Lemma 3 is adapted from results in Chan and Wei (1987), Phillips (1988), Hansen
(1992) and Hamilton (1994). It is key to find the limiting distribution of the estimators of
the slope in (16) that we present below:

Proposition 5 Let a1(Tλ) denote the recursive OLS estimator of α1 in (16). Under as-
sumptions (B1)-(B3), T (a1(Tλ)− α1) has the following limiting distribution:

T (a1 (Tλ)− α1) ⇒ α1 (Tλ) (18)

=
σε
ση

ρεη

⎧⎪⎨⎪⎩
R λ
0

h
Jc (v)− 1

λ

R λ
0 Jc (v)dv

i
dWη (v)R λ

0

h
Jc (v)− 1

λ

R λ
0 Jc (v)dv

i2
dv

⎫⎪⎬⎪⎭
+
σε
ση

¡
1− ρ2εη

¢1/2⎧⎪⎨⎪⎩
R λ
0

h
Jc (v)− 1

λ

R λ
0 Jc (v)dv

i
dWu (v)R λ

0

h
Jc (v)− 1

λ

R λ
0 Jc (v) dv

i2
dv

⎫⎪⎬⎪⎭ ,

where ρεη = σεη/(σεση), Wu(•) denotes a Brownian Motion process in the unit interval
independent of Wη(•) (and Jc(•)), and 0 < λ ≤ 1. When λ = 1, the limiting distribution of
the full sample estimator in Elliott and Stock (1994) obtains.

Proof. See Appendix B.

Corollary 5 Proposition 5 and the Continuous Mapping Theorem (CMT) imply the follow-
ing limiting distribution for the maximal absolute fluctuation of the OLS recursive estimator
of the slope in (16) relative to its full-sample estimate:

max
λ0≤λ<1

T |a1 (Tλ)− a1 (T )|⇒ sup
λ0≤λ<1

|α1 (λ)− α1 (1)| , (19)

where 0 < λ0 < 1.
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Proof. The proof follows the same lines as the proof of Corollary 1.

Proposition 6 Let ar1(Tλ) denote the reverse-recursive OLS estimator of α1 in (16). Un-
der assumptions (B1)-(B3), T (ar1(Tλ)− α1) has the following limiting distribution:

T (ar1 (Tλ)− α1) ⇒ αr1 (Tλ) (20)

=
σε
ση

ρεη

⎧⎪⎨⎪⎩
R 1
λ

h
Jc (v)− 1

1−λ
R 1
λ Jc (v) dv

i
dWη (v)R 1

λ

h
Jc (v)− 1

1−λ
R 1
λ Jc (v) dv

i2
dv

⎫⎪⎬⎪⎭
+
σε
ση

¡
1− ρ2εη

¢1/2⎧⎪⎨⎪⎩
R 1
λ

h
Jc (v)− 1

1−λ
R 1
λ Jc (v)dv

i
dWu (v)R 1

λ

h
Jc (v)− 1

1−λ
R 1
λ Jc (v) dv

i2
dv

⎫⎪⎬⎪⎭ ,

where ρεη = σεη/(σεση), Wu(•) denotes a Brownian Motion process in the unit interval
independent of Wη(•) (and Jc(•)), and 0 ≤ λ < 1.

Proof. See Appendix B.

Corollary 6 Proposition 6 and the Continuous Mapping Theorem (CMT) imply the follow-
ing limiting distribution for the maximal absolute fluctuation of the OLS reverse-recursive
estimator of the slope in (16) relative to its full-sample estimate:

max
0<λ≤λ0

T |ar1 (Tλ)− a1 (T )|⇒ sup
0<λ≤λ0

|αr1 (λ)− α1 (1)| , (21)

where 0 < λ0 < 1.

Proof. The proof follows the same lines as the proof of Corollary 1.

The distributional results in Propositions 5 and 6 are also useful to obtain the limiting
distribution of the sequence of Chow test statistic for structural change at dates {[Tλ] : 0 <
λ0 ≤ λ ≤ 1− λ0 < 1}. From this distribution we can obtain, by simple application of the
CMT, the distribution of the Quandt Likelihood Ratio (QLR) test (Quandt, 1960), which
is the max of these statistics. This distribution is given in the corollary to the following
proposition.
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Proposition 7 Consider the Chow-Wald statistic to test for a structural break in the slope
of (16) at date [Tλ],

F (Tλ) =
1bσ2ε [a1 (Tλ)− ar1 (Tλ)]

2hP[Tλ]
t=2

¡
xt−1 − x[Tλ]

¢2i−1
+
hPT

t=[Tλ]+1

¡
xt−1 − x[T (1−λ)]

¢2i−1 , (22)

where a1(Tλ) is the recursive OLS estimator and ar1(Tλ) is the reverse-recursive estimator of
α1 in (16), bσ2ε =PT

t=2{(rt−r[T ·1])−a1(T )(xt−1−x[T ·1])}2/(T−1), z[Tλ] =
P[Tλ]

t=2 zt/([Tλ]−
1), zt = (rt, xt−1) and x[T (1−λ)] =

PT
t=[Tλ]+1 xt−1/[T (1− λ)].

Under assumptions (B1)-(B3) and Propositions 5 and 6, F (Tλ) converges in distribution
to:

F (Tλ)⇒ F (λ) =
1

z3 (Jc)

h
ρεηz1 (Jc,Wη) +

¡
1− ρ2εη

¢1/2z2 (Jc,Wu)
i2
,

where ρεη = σεη/(σεση), and z1, z2 and z3 are continuous functionals of Jc, Wη and Wu

given in Appendix B, Jc is the O-U process defined in Lemma 3 and (Wη,Wu) are Brownian
Motion processes in the unit interval, with Wu independent of Jc and Wη.

Proof. See Appendix B.

Corollary 7 Proposition 7 and the CMT imply the following limiting distribution of the
maximal Chow-Wald test statistic (22)over a range of break dates–the QLR statistic:

QLR = max
λ0≤λ≤1−λ0

F (Tλ)⇒ sup
λ0≤λ≤1−λ0

F (λ), (23)

where 0 < λ0 < 1.

Proof. The proof follows the same lines as the proof of Corollary 1.

Propositions 5 and 6 show that both the OLS recursive and reverse-recursive estimators
of the slope in (16) and the full-sample estimator–which obtains setting λ = 1 in (18)–
are superconsistent: They converge to the true slope α1 at rate T , which is faster than
the usual

√
T -rate. Unlike the fluctuation statistics presented in the previous section, the

distribution of the fluctuation statistics (19) and (20) and the QLR statistic (23) depend
on a set of nuisance parameters, σε/ση, ρεη and c. The second moments σε/ση and ρεη are
consistently estimable, but c is not. However, we can still construct conservative tests for
the null of stability. We discuss how to do it in section 3.
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3 Monte Carlo Evidence

The asymptotic distributions of the stability test given in section 2 are non-standard dis-
tributions for which there are no tables to look for critical values. However, they are easy
to evaluate through Monte Carlo experiments. These Monte Carlo experiments proceed by
generating repeated samples of discretized versions of the continuous time functionals that
describe the distributions for a large enough sample size T .

Tables 1 through 4 report the results of several Monte Carlo experiments that reproduce
the asymptotic distributions of the univariate fluctuation statistics (5), (7), (12) and (15) for
three values of δ using discrete 10, 000 approximations of size T to these random functionals,
for several values of T and δ–we only report results for three values of δ, though we have
performed the experiments for all values of δ we use in our empirical analysis. We have
considered several values of T in order to evaluate how fast these discrete approximations
converge to their asymptotic limits. We choose values of T which are multiples or dividers
of 840, the actual number of monthly observations in our sample of one-period log returns
(log returns in the NYSE-AMEX-NASDAQ stock markets, from 1926.01 through 1995.12).
The values of δ are set so that [Tδ] equals multiples of 12 when T = 840. The trimming
parameter λ0 is set so 25% of the effective sample used in the first recursion or reverse-
recursion4.

These tables show that our discrete approximations converge reasonably fast to the
asymptotic distributions in all of the univariate fluctuation statistics. The differences in
percentile values when T = 312 and T = 2520 are minimal over all percentiles at all
horizons, with the exception perhaps of the extreme right percentiles of the fluctuation
statistics based on the Fama-French univariate regression statistic. According to these
results, for T equal to the sample size we use in our empirical exercise (T = 840) we achieve
a good enough to the asymptotic distribution of our univariate fluctuation statistics under
the null hypothesis of stability. Hence, the result in Richardson and Stock (1989) on the fast
convergence of full sample estimators to their asymptotic distributions under their k/T → δ
approach is also valid for the recursive and reverse-recursive estimators.

Figure 1 plots histograms of the Monte Carlo distributions–when T = 840–of the

4For the fluctuation statistics based on the recursive and reverse-recursive variance ratio, we define the
effective sample as [T (1− δ)], i.e., the total number of observations minus those needed to compute the first
[Tδ]-horizon return observation, that we need to compute the first recursive (or reverse-recursive) variance
ratio. For the fluctuation statistics based on the univariate Fama-French regression statistic, the effective
sample is [T (1 − 2δ)], i.e., the total number of observations minus those needed to compute the first two
[Tδ]-horizon return observations, that we need to compute the first recursive (or reverse-recursive) regression
statistic.
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fluctuation statistics (5) and (12) for the same range of values of δ we consider in Tables
1 through 4. Each histogram also reports the mean, standard deviation and coefficient of
variation of the distribution. Both tables and figures show the distributions of the fluctua-
tion statistics are skewed to the right and they shift to the right as δ increases, though the
percentile values do not increase linearly with δ. Both the mean and standard deviation of
the distribution, though they also increase less than proportionally with δ. The coefficient
of variation slightly decreases with δ in the fluctuation statistic based on the variance ratio,
while it increases with δ in the fluctuation statistic based on the Fama-French univariate
regression statistic. Therefore, as we consider larger horizons, the maximum absolute de-
viations of the recursive (reverse-recursive) statistics from their full sample estimates that
are consistent with the null distribution tend to increase. Moreover, in the case of the
Fama-French univariate regression, the range of admissible values of these deviations–in
the sense of being consistent with the null–also increases with the horizon. However, they
do not increase linearly with the horizon.

Overall, our Monte Carlo experiments for the univariate statistics show that large ab-
solute deviations of the recursive and reverse-recursive statistics are consistent with the
distributions under the null. For example, the distribution reported in Table 1 implies that
the recursive variance ratio may diverge from its full sample estimate, under the null of
stability, as much as 47%, 78% and 85%, for horizons of 1, 5 and 8 years respectively. For
the reverse-recursive variance ratio the admissible deviations are similar. The distributions
for the fluctuation tests based on the Fama-French univariate regression statistic also allow
for large deviations of the recursive and reverse-recursive statistics from the full sample
estimates to be consistent with the same return generating process.

Table 5 reports the Monte Carlo distributions of the multivariate fluctuation statistics
(19), (20) and (23). We have shown in section 2.4 that the asymptotic distributions of these
statistics depend on the unknown parameters σε/ση, ρεη and c. We can substitute them for
consistent estimators and the asymptotic results in section 2.4 still hold. However, while
σε/ση and ρεη are consistently estimable from the data

5, c is not. Nevertheless, we can still
put our results to work by using the approach suggested inWright (1996) to construct critical
values for structural stability tests when the regressors are nearly integrated processes. The
first step in this approach is to construct a 95% confidence interval for it based on the
sample Dickey-Fuller t-statistic for φ in (17), following the methodology proposed in Stock
(1991) to construct confidence intervals for c. The basic insight of this methodology is to
invert the acceptance region of the test statistic whose distribution depends on c6.

5We have shown in Proposition 7 that the full-sample OLS estimator of the residual variance in (16)
is consistent for σ2ε. Using similar arguments we can also prove that σ

2
η =

ST
t=2 eη2t/(T − 1) and σεη =ST

t=2 eεteηt/(T − 1), where eηt = xt − xt−1, are consistent for σ2η and σηε respectively.
6To do that we construct, through Monte Carlo experiments, a set of distributions of the test statistic
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Given this confidence interval, we compute, through Monte Carlo experiments, the as-
ymptotic distributions in Propositions 5, 6 and 7 and Corollaries 5 and 6 for a grid of values
of c in the confidence interval and consistent estimators of σε/ση and ρεη. Hence we end up
with a set of distributions for each statistic–one per each value of c. By choosing as critical
value the largest 95% percentile of this set of distributions we can construct a conservative
test of the null of parameter stability for that particular statistic, since by the Bonferroni
inequality, the probability that the statistic takes values above this critical value is always
less or equal than 10%.

Panel A in Table 5 reports 10% critical values for (18)–for λ = 1 and α1 = 0–, (19),
(21) and (23) constructed using the method described above. The 95% confidence interval
for c shown in the table is based on the sample value of the Dickey-Fuller t-statistic for
φ in (17) generated by our data set7–one-period log returns and log dividend-price ratios
in the NYSE-AMEX-NASDAQ stock markets, from 1926.12 through 1995.12. The values
of σε/ση and ρεη are all based on consistent estimates obtained from our data set. Monte
Carlo distributions are based on 10, 000 simulations of the continuous time process for the
random functionals (18), (19), (21) and (23). To simulate the processes we use discrete
approximations of size T = 829, and a grid of 11 equally-spaced values of c in its 95%
confidence interval. The trimming parameter λ0 is set to 25%. Panel B reports the average
median across the set of distributions generated by the grid of values of c.

The critical values and the medians of the full sample estimator and the fluctuation
statistics are very sensitive to changes in the values of the nuisance parameters σε/ση and
ρεη. By contrast, the critical values for the QLR statistic seem to be quite robust to changes
in the value of the nuisance parameters. They are also very similar to those reported by
Wright (1996) for the case in which the regressor is strictly exogenous. Moreover, Wright
(1996) has shown that the QLR statistic is robust to changes in the nuisance parameter c.
Hence, the QLR statistic seems to be robust to regressor endogeneity and to changes in the
value of c.

τ for an ample grid of values of c. For each percentile p, this generates a function in the (τ , c) space by
joining the points (τ (p, ci), ci), where τ (p, ci) is the value of τ corresponding to the pth-percentile in the
empirical distribution of τ when c = ci. Given an observed value eτ of the test statistic, we look for that
interval of values of c which are consistent with the observed value of τ by looking at the ordinates of eτ in
the (τ , c) space. For example, Table 5 shows this confidence interval for c based on the sample value of the
Dickey-Fuller t-statistic for φ in (17) generated by our data set.

7We are grateful to Jonathan H. Wright for allowing us to use a set of tables he has constructed that
report 90% and 95% confidence intervals for c for a wide range of values of the Dickey-Fuller t-statistic for
φ.

20



4 Empirical Results

4.1 The data

Our empirical exercise is based on monthly data from 1925.12 through 1995.12 on returns
and dividends on the value-weighted and equally-weighted portfolios inclusive of all securi-
ties traded in the NYSE, AMEX and NASDAQ markets during this period, as reported in
the Indices files of the Center for Research in Security Prices (CRSP, 1996). Log real returns
on each portfolio are log nominal returns on the portfolio minus the log rate of change in
the Consumer Price Index for All Urban Consumers, not seasonally adjusted, as reported
in the SBBI files of CRSP (1996). Log excess returns on each portfolio are log nominal
returns on the portfolio in excess of log returns on US Treasury Bills, as reported in the
SBBI files of CRSP (1996). We consider both the value-weighted portfolio and the equally-
weighted portfolio because they convey different information: The weighting scheme in the
equally-weighted portfolio implies a relatively larger representation of firms with small mar-
ket capitalization in the computation of returns than in the value-weighted portfolio, whose
returns are essentially the returns on firms with large market capitalization.

Following the standard convention in the literature, the dividend-price ratio at month
t is computed as in Fama and French (1989). That is we compute a moving average of
monthly dividends during the previous year and dividing it by the ex-dividend value of
the portfolio at the end of month t: (D/P )t =

P11
t=0Dt−i/Pt. This way we remove the

seasonality in dividend payments that shows up in the aggregate series.

4.2 Testing for the stability and significance of univariate predictability
in stock returns.

Tables 6 through 9 report full sample estimates and recursive and reverse-recursive estimates
of the variance ratio (1) and the Fama-French univariate regression statistic (2) for monthly
log real returns and log excess returns on the CRSP equally-weighted and value-weighted
portfolios. All these statistics have been computed–and their asymptotic distributions eval-
uated through the Monte Carlo experiments described in section 3–for horizons [Tδ]/12 =
1, 2, 3, 4, 5, 8 and 10 years. The trimming parameter for the recursive and reverse recursive
estimators is set to 25% of the effective sample8. Since these statistics are not independent,
we also compute average statistics across horizons9. Figures 2 and 3 plot recursive and

8See footnote 5.
9For example, we compute the average recursive variance ratio statistic as vr(Tδ, Tλ) =S7
i=1 vr(Tδi, Tλ)/7, from which the full-sample variance ratio statistic obtains by setting λ = 1, and we
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reverse-recursive estimates of the recursive and reverse-recursive statistics for horizons 1,
3, 5 and 8 years generated by log real returns on the equally-weighted portfolio and the
value-weighted portfolio. The upper four plots correspond to the variance-ratio statistic,
while the bottom four correspond to the Fama-French univariate regression statistic. In
each plot there are three horizontal solid lines. The middle one crosses the y-axis at the
value of the full-sample estimate of the statistic, while the other two lines are drawn at the
boundaries of a most-conservative, symmetric 95% confidence interval for the recursive and
reverse-recursive statistic10.

The second and third blocks of Tables 6 through 9 report the stability tests based on the
variance ratio. The evidence against the null hypothesis of stability in the autocorrelation
structure of returns is almost non-existent for both log real returns and log excess returns on
the equally-weighted portfolio, across all horizons (see Tables 6 and 8). Moreover, in some
cases the absolute percentage deviations of the recursive and reverse-recursive estimates of
the variance ratio from the full-sample estimates are so small that they are on the left tail
of the Monte Carlo distribution of the fluctuation statistics. The null of stability is rejected
at conventional significance levels only for the reverse-recursive fluctuation statistic at the
longest horizons. This result is not surprising, since we have shown in section 3 that large
percentage deviations are consistent with the null distributions of the fluctuation statistics.
For example, the two upper left plots in Figure 2 show that any recursive or reverse-recursive
estimate of the variance ratio between .65 and 1.8 is consistent, in the sense of lying in a
95% confidence interval, with a full-sample variance ratio of 1.23 at a 1-year horizon; at a
5-year horizon, the confidence interval lies between .15 and 1.22 for a full sample estimator
of .73.

By contrast, Tables 7 and 9 show evidence against the null in the value-weighted port-
folio. Even though the recursive fluctuation test does not reject the null at conventional
significance levels at most horizons, the reverse-recursive fluctuation test does reject the

compute the average fluctuation statistic based on the recursive variance ratio as

max
δ≤λ≤λ0

����vr(Tδ, Tλ)− vr(Tδ, T )

vr(Tδ, T )

���� .
The asymptotic representation of the average statistics obtains inmediately from Proposition 1 and the
CMT following the same argument we use to obtain Corollary 1. For example, vr(Tδ, Tλ) ⇒ V R(δ, λ) =S7

i=1 V R(δi, λ)/7. We compute the other average statistics in the “Avrg.” column of Tables 6 through 9
and their asymptotic distributions in a similar way. For each fluctuation test, we report its value, its p-value,
the date of its occurrence and the value of the statistic on which the fluctuation test is based on that date.
10For the recursive and reverse-recursive variance ratio, this confidence interval is [vr(Tδ, T ) × (1 −

c.95), vr(Tδ, T ) × (1 + c.95)], and for the recursive and reverse-recursive Fama-French regression statistic
it is [b(Tδ, T )− c.95, b(Tδ, T ) + c.95], where c.95 = min{c.95, cr.95}, c.95 = max{c.95, cr.95} and c.95 and cr.95 are
the 95% percentiles of the Monte Carlo distributions of the corresponding recursive and reverse-recursive
fluctuation statistics.
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null. This rejection is specially strong for log excess returns, where the null is also re-
jected for the average statistic at a 5% significance level. For both log real and log excess
value-weighted returns, the rejection of the null of stability at short horizons is signalled by
reverse-recursive variance ratios that are well below the full-sample estimates, while at the
right end of the horizon spectrum the rejection occurs because the reverse-recursive vari-
ance rations are well above the full-sample estimates. Also, at short horizons the occurrence
dates of the maximum absolute percentage deviations are around the mid 70’s, while for
the longest horizons they are all in the 50’s. The upper panel in Figure 3 illustrates fairly
well this characteristic behavior of the reverse-recursive variance ratio: It increases in the
40’s and reach its peak in the 50’s, as we remove the years of the Great Depression from
the sample, and it falls dramatically in the mid 70’s, as we remove from the sample the
previous years.

The bottom blocks of Tables 6 through 9 report our empirical results for the fluctu-
ation statistics based on the Fama-French univariate regression statistics. The evidence
that emerges from them lends little statistical support against the null of stability in the
autocorrelation structure of stock returns on almost every dimension of the data (across
horizons, portfolios and measures of return) with only one exception. This exception is
the reverse-recursive fluctuation test at a 1-year horizon, that rejects the null of stability
across portfolios and measures of return. This rejection occurs because of a large fall of
the statistic in the mid 70’s, similar to that observed in the reverse-recursive variance ratio.
This conclusion is confirmed visually by the four plots in the bottom half of Figures 2 and
3.

Figures 2 and 3 also show another interesting common feature of both the variance
ratio statistic and the regression statistic: The reverse-recursive estimates exhibit a larger
variability than the recursive estimates. The smoothness of the recursive estimates results
from the low variability in the post-World War II returns relative to the pre-World War II
returns. Hence, the largest proportion of the total variability in the sample gets incorporated
in the very first recursive estimate, which is computed using the first 25% part of the sample,
and this in turn makes the recursive estimates to move little relative to the first estimate.
Because the reverse-recursive estimator discards the early part of the sample as it moves
forward, it allows the relative variability within the postwar period to manifest itself.

The picture that emerges then suggests a structural change towards more univariate
predictability in the period after the early 50’s, since the reverse-recursive estimates of the
variance ratio decrease systematically during the whole period to levels well below one at all
horizons. This trend is reinforced by a sudden fall in the mid 70’s. The plots for the Fama-
French regression statistic also show a pattern of decreasing reverse-recursive estimates.
This result defies the commonly held view that most of the univariate predictability in
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stock returns is induced by the Great Depression period. This view comes mainly from
comparing estimates that include the prewar period with estimates that exclude this period.
We can easily do this exercise in our plots by comparing the recursive estimate with the
reverse-recursive estimate at any date. Thus, by only looking at only one date in the late
40’s or early 50’s, we observe a variance ratio for the sample starting at that point–the
reverse-recursive variance ratio– well above the variance ratio for the sample ending at that
point–the recursive variance ratio. The plots for the Fama-French regression statistic also
show large disparities between the recursive and reverse-recursive estimates around these
dates. However, if we do not limit ourselves to look at only this particular point in time,
but the whole set of recursive and reverse-recursive estimates, we observe the pattern we
have just described suggesting a change towards more, rather than less, predictability in
the latter part of the sample.

Finally, we also report the full-sample estimators of the variance ratio and Fama-French
univariate regression statistics as well as their p-values, which are obtained from a Monte
Carlo simulation of V R(δ, 1) and β(δ, 1) similar to the experiments described in section
3. Conditional on structural stability over the whole sample, there is some evidence of
predictability–at conventional significance levels–only at horizons of two years, and no
much evidence of predictability beyond that horizon.

4.3 Testing for the stability and significance of multivariate predictability
in stock returns.

Table 10 reports our empirical results for testing both the statistical significance and the
structural stability of the linear forecasting model (16). The testing strategy described in
section 3, requires the estimation of a confidence interval for c11, a measure of how close
is the autoregressive parameter in (17) to unity. Panel A reports our full-sample estimates
for the AR(1) process fitted to the log dividend yield. It is interesting to note that while
the point estimate of φ is close to unity, the 95% confidence interval for φ includes a unit
root only in the extreme right tail of the interval. This result supports the notion that the
log dividend yield is a very persistent, but still mean-reverting, process: a near-integrated
process.

Panel B report our estimation results for the forecasting equation (16) when estimated
for log real returns and log excess returns on the value-weighted and equally weighted
portfolios. It is divided in two blocks. The first block reports full-sample estimates of
the slope, two statistics to test for the statistical significance of the slope conditional on

11See footnote 8.
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structural stability and full sample estimates of the standard deviation of the innovations
in returns and the correlation between innovations in returns and innovations in the log
dividend-yield. The estimated correlation is negative and very high in absolute value. The
first statistic to test for the statistical significance of the slope is the conventional t-statistic,
which under conventional asymptotics does reject the null α1 = 0 at a 10% significance
level for log real value-weighted and equally-weighted returns and at a 5% level for log
excess value-weighted and equally-weighted returns. However, conventional asymptotics
hold only if the regressor is a strictly stationary process, and the evidence shown in Panel
A strongly suggests that, while the log dividend yield is not an integrated process, it is a
near-integrated process. Hence we test the significance of the slope under the assumption
that the log dividend yield follows a near-integrated process, using the apparatus developed
in section 2.4. The third row of Panel B reports T times the full-sample estimate of the
slope, whose distribution is given in (18) when α1 = 0. The value on each cell should be
compared to the corresponding cell in Panel A of Table 5 for a 10% significance test (see
section 3). The estimated statistics are well below these critical values, even well below
the median of their asymptotic distributions as reported in Panel B of Table 5. Therefore,
the null hypothesis that one-month log returns are not forecastable from the log dividend
yield is strongly not rejected when we take into account the persistence in the forecasting
variable.

This evidence depends, however, on the forecasting model being stable along the sample
period. The second block in Panel B reports the sample estimates of the fluctuation statistics
(19) and (21) and the sequential QLR statistic (23). The trimming parameter for the
recursive and reverse recursive estimators is set to 25% of the effective sample12. All three
statistics do not reject the null of stability: Their values are well below the 10% critical
values shown in Panel A of Table 5, and even below the medians of the distributions shown
in Panel B of Table 5. Therefore, we cannot reject that the model is stable under the
null distributions presented in section 2.4, which take into account the persistence in the
log dividend yield. But we would not be able to reject this null even under strongest
assumptions. For example, if we suppose for a moment that the regressor is exogenous,
stationary and that we perform a conventional Chow test for structural change at a break
date that happens to maximize the value of the statistic, so the F-statistic (22) has an F
distribution, we would still accept the null hypothesis of stability at a 5% level.

By comparing point estimates for the pre-World War II period and the postwar period,
it has been argued that the evidence on the forecastability of returns from the dividend yield
is stronger in the postwar period. Figure 4 plots recursive and reverse-recursive estimates
of the slope and the F-statistic (22) generated by log real returns and log excess returns
on the equally-weighted portfolio and the value-weighted portfolio. The horizontal lines in
12See footnote 5.
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the plots correspond to the full-sample estimates13. The plots for the recursive and reverse-
recursive estimates of the slope for log excess returns help us to understand why it is claimed
in the literature that the postwar period is characterized by more predictability in stock
returns: The reverse-recursive estimates are well above the recursive estimates most of the
time. That is, most of the time the estimate for the subsample starting at that point is
larger than the estimate for the subsample that ends at that point14. Hence, by looking only
at point estimates, one would conclude there is more predictability in the postwar period
than in the prewar period. However, when we compare these estimates with proper critical
values, the statistical evidence suggests these differences are due to sample variability rather
than population variability. Moreover, the last part of the sample shows a inversion in the
relative pattern of the recursive and reverse-recursive estimates of the slope, which also
shows up in the plots of the QLR statistic, where the peak of the F-statistic is around 1970
for all log returns except for log excess returns on the value-weighed portfolio.

5 Conclusion

The literature on the predictability of stock returns has been abundant and fruitful during
the last decade. Progress has been made on the issue of stock return predictability by
considering how this predictability may change as we vary the horizon over which we measure
returns and how other variables, particularly the dividend yield, may help forecast returns.
However, there are some problems this paper have addressed. On one hand, the inference
about predictability on stock returns has been shown to depend on the sample period we
use to estimate the test statistics, hence suggesting some kind of structural break in the
predictive relations for stock returns. On the other hand, the log dividend yield exhibits high
persistence and its innovations are strongly negatively correlated with innovations in stock
returns. Recent developments in the time series literature suggest these characteristics of the
log dividend yield have important consequences for inference, to the extent that invalidate
inference results based on standard asymptotics.

This paper has addressed the issue of stability in the context of recursive estimation.
We have derived the asymptotic distributions of fluctuation statistics based on recursive
and reverse-recursive estimators of the most common statistics used in the literature to
measure persistence in stock returns: the variance ratio, the Fama-French univariate re-
gression statistic for long horizon returns and the slope in the regression equation of log
returns onto the log dividend yield. We derive the asymptotic results for the univariate

13We have not plotted lines for a 95% confidence interval because they are so distant from the recursive
estimates that they would obscure the sample variation in the recursive estimates.
14Though not shown, this is true for recursive and reverse-recursive t-ratios as well.
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statistics–the variance ratio and the Fama-French univariate regression statistic–under
general conditions of autocorrelation and heteroskedasticity, and the asymptotic results for
the multivariate regression statistic under the assumption that the log dividend yield is a
nearly integrated process. For this statistic we also derive the asymptotic distribution of
the sequential QLR statistic–the maximal Chow-Wald F-test for structural breaks–under
the same set of assumptions.

The evidence presented here on the stability of univariate predictability in stock returns
lends some statistical support to the common presumption that there is a structural break
in the behavior of long horizon returns in the 50’s, after the Federal Reserve agreement on
interest rates. However, the strongest evidence about a structural break dates from the mid
70’s, right after the stock market plunge caused by the oil and monetary crisis of the early
70’s. Our recursive and reverse-recursive estimates suggest the post-World War II period
is characterized by a change towards more univariate predictability in stock returns. By
contrast, our empirical evidence on the stability of the log dividend-price ratio forecasting
relation does not support the customary practice of using the post-World War II period to
estimate regressions of log returns onto lagged log dividend yields. The null hypothesis of
stability in the regression coefficients is not rejected at any meaningful significance level,
both using fluctuation test and the QLR test.

Our results on the asymptotic distribution of the recursive estimators of the statistics
are also useful to test for the statistical significance of the forecasting relations conditional
on structural stability by considering the distribution of the full-sample estimators. For the
variance ratio and the Fama-French univariate regression statistic these distributions are
those reported in Stock (1989). We corroborate his empirical results for a sample period
that adds 10 years to his sample (1926-1985): There is some evidence on univariate mean-
reversion in stock returns over horizons up to two years, but not much evidence beyond
that. With respect to the multivariate forecasting relation involving log dividend yields we
find no statistical evidence that one-month log returns, whether real or in excess of returns
on T-bills, are predictable from log dividend yields once we take into account the high
persistence in the log dividend yield, even though under standard asymptotics we do reject
the null hypothesis that the regression coefficient of the log dividend yield is statistically
zero.
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A Appendix A

In this appendix we state some lemmas and prove the propositions in section 2.3 of the paper.
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A.1 Proof of Lemma 2

Using the definition of [Tδ]-horizon log return we can decompose (r([Tδ])[Tv] − [Tδ]µ) as follows:
u
1

T

�
r
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[Tv] − [Tδ]µ

�
=

u
1

T

[Tv][
t=1

(rt − µ)−
u
1

T

[T (v−δ)][
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(rt − µ) .

But, from Lemma 1 (FCLT for general I (0) processes), the first term in the sum above converges in distrib-
ution to V 1/2W (v), and the second term converges to V 1/2W (v − δ). The CMT states that if y[Tv] ⇒ y(v),
where y(v) is a random function of v ∈ [0, 1], and f(·) is a continuous functional, then f(y[Tv]) ⇒ f(y(v))̇
(Hamilton, 1994 and Stock, 1994). Lemma 1 shows that the partial sums of demeaned one-period returns
have a limiting representation as a random function in C[0, 1]. Since the addition of random functions defines
a continuous functional, the result stated in the lemma follows applying the CMT.

A.2 Proof of Proposition 1

To prove this proposition, first note that Lemma 1 (FCLT) and the definition of µ (1, Tλ) (the recursive
estimator of the mean of rt) implies the following limiting representation for
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√
T (µ (1, Tλ)− µ) =

1

λ

u
1

T

[Tλ][
t=1

(rt − µ) (24)

⇒ 1

λ
V 1/2Wr (λ) .

To obtain the limiting distribution of vr(Tδ, Tλ), note that this distribution equals the ratio of the
limiting distributions of numerator and denominator, by the CMT. Multiply both numerator and denomi-
nator by T−2. Adding to and substracting from the terms in brackets in the numerator [Tδ]µ, the resulting
expression for the numerator is:�
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Lemma 2 gives us the limiting distribution of the first term in brackets, while (24) gives us the limiting
distribution for the second term. Finally, the CMT and the definition of integral imply the following
distribution for T−2 times the numerator of vr(Tδ, Tλ):�
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Also, the resulting expression for the numerator is:�
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⇒ δλ · γ0,
from (A3). Collecting terms we obtain the desired result.

A.3 Proof of Proposition 2

The proof of this proposition is similar to that of Proposition 1. It follows from simple algebraic manipulations
of the expression for the reverse-recursive estimator (6), Lemma 2, the FCLT and CMT and the definition
of integral.

From Lemma 1 we have:
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Multiplying both numerator and denominator of vrr(Tδ, Tλ) by T−2 we find that, using (25), the numerator
converges in distribution to:�
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Similarly, T−2 times the denominator equals δ(1 − λ + δ)γr0(1, T (λ − δ))−1 which converges in probability
to δ(1− λ+ δ)γ0 by (A3’). Collecting terms we obtain the result stated in the Proposition.

A.4 Proof of Proposition 3

Write the recursive OLS estimator of β(δ) in (8) as
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From Lemma 2, the CMT and the definition of integral,u
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Applying again Lemma 2, the CMT and the definition of integral to the numerator and denominator of
b(Tδ, Tλ) we obtain (9) in Proposition 3. Note that V cancels out in both numerator and denominator.

To find the limiting distribution of t(Tδ, Tλ), write the statistic as
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w(j, T δ) is some weighting scheme that depends on j/[Tδ]–for example, w(j, T δ) = 1 − j/([Tδ] + 1) if we
use the Newey-West estimator–, γz,T (j) is a full-sample estimator of γz(j), the j− th order autocovariance
of zt, and
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Assume that limT→∞(j/T ) = J > 0. Then limT→∞ w(j, Tδ) = w(J, δ)–for example, w(J, δ) = 1 −
J/(δ + j) in the Newey-west weighting scheme. Also, from Lemma 2, the CMT, the definition of integral
and (26), we have that
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Collecting terms for the numerator and denominator of T−1t(Tδ, Tλ), we obtain (10).

A.5 Proof of Proposition 4

The proof for this proposition follows the same arguments as the proof for Proposition 3. Write the reverse-
recursive OLS estimator of β(δ) in (8) as
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Applying again Lemma 2, the CMT and the definition of integral to the numerator and denominator of
br(Tδ, Tλ) we obtain (13) in Proposition 4. Note that V cancels out in both numerator and denominator.

To find the limiting distribution of tr(Tδ, Tλ), write the statistic as

1
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br (Tδ, Tλ)− b (Tδ, T )s
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.

The asymptotic distribution of the numerator obtains from (13) and the asymptotic distribution of
Ω (Tδ, T ) is given in (27). We also have that
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Wr (v − δ)−Wr (v − 2δ)− µr−δ (δ, 1− λ)

�2
= Qr (δ, λ)−1 .

Collecting terms for the numerator and denominator of T−1t(Tδ, Tλ), we obtain (14).

B Appendix B

In this appendix we state some lemmas and prove the propositions in section 2.4 of the paper.

B.1 Proof of Proposition 5

Writing the OLS recursive estimator of α1 in deviations with respect to the sample means we have that:

a1 (Tλ) =

S[Tλ]
t=2

�
xt−1 − x[Tλ]

� �
rt−1 − r[Tλ]

�S[Tλ]
t=2

�
xt−1 − x[Tλ]

�2
= α1 +

S[Tλ]
t=2

�
xt−1 − x[Tλ]

� �
εt − ε[Tλ]

�S[Tλ]
t=2

�
xt−1 − x[Tλ]

�2
= α1 +

S[Tλ]
t=2 xt−1εt − ([Tλ]− 1)x[Tλ]ε[Tλ]S[Tλ]

t=2

�
xt−1 − x[Tλ]

�2 ,

where z[Tλ] =
S[Tλ]

t=2 zt/([Tλ]− 1), for zt = (xt−1, rt, εt)̇.

Consider now

T (a1 (Tλ)− α1) =
1
T

S[Tλ]
t=2 xt−1εt − λx[Tλ]ε[Tλ] +

1
T x[Tλ]ε[Tλ]

1
T2

S[Tλ]
t=2

�
xt−1 − x[Tλ]

�2 . (28)
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Using the CMT and the FCLT, the limiting representation of the ratio in (28) will be ratio of the limiting
representations of numerator and denominator.

For the denominator we have:

1

T 2

[Tλ][
t=2

�
xt−1 − x[Tλ]

�2
=

1

T

[Tλ][
t=2

⎛⎝xt−1√
T
− T

[Tλ]− 1
1

T

[Tλ][
t=1

xt−1√
T

⎞⎠2

(29)

⇒ σ2η

] λ

0

�
Jc (v)− 1

λ

] λ

0

Jc (v) dv

�2
dv,

where the second line follows immediately from Lemma 3, the CMT and the definition of integral.

To find the limiting representation of the numerator it is convenient to use the linear projection of εt
onto ηt, so we can decompose εt in terms of uncorrelated processes. This decomposition is given by

εt =
σεη
σ2η

ηt + ut, (30)

where ut is a m.d.s. with Var (ut) = σ2ε − (σ2εη/σ2η) and Cov (ηt, ut) = 0.

Given (30) we have

1

T

[Tλ][
t=1

xt−1εt =
σεη
σ2η

1

T

[Tλ][
t=1

xt−1ηt +
1

T

[Tλ][
t=1

xt−1ut

⇒ σεη

] λ

0

Jc (v) dWη (v) +
�
σ2εσ

2
η − σ2εη

�1/2 ] λ

0

Jc (v) dWu (v) ,

where the second line follows from Theorem 2.4 in Chan and Wei (1987)–see also Lemma 1 in Phillips
(1987).

Also, from (30), the FCLT and the CMT,

x[Tλ]ε[Tλ] =

�
T

[Tλ]− 1
�2⎛⎝ 1

T

[Tλ][
t=1

xt−1√
T

⎞⎠⎛⎝[Tλ][
t=1

εt−1√
T

⎞⎠
⇒ 1

λ2

�
ση

] λ

0

Jc (v) dv

�#
σεη
ση

Wη (λ) +

�
σ2ε −

σ2εη
σ2η

�1/2
Wu (λ)

$
which in turn implies that T−1x[Tλ]ε[Tλ] is op (1) .

Finally, collecting terms and noting that W (λ) =
U λ
0
dW (v) we obtain (18).

B.2 Proof of Proposition 6

The proof for this proposition is very similar to that of Proposition 5, so we will skip some intermediate
steps. First, note that we can write the OLS reverse-recursive estimator of α1 as:

T (ar1 (Tλ)− α1) =

1
T

ST
t=[Tλ]+1 xt−1εt − (1− λ)x[T (1−λ)]ε[T (1−λ)]

1
T2

ST
t=[Tλ]+1

�
xt−1 − x[T (1−λ)]

�2 , (31)
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where z[T (1−λ)] =
ST

t=[Tλ]+1 zt/[T (1− λ)], for zt = (xt−1, rt, εt)̇.

By the CMT, the limiting representation of (31) is the ratio of the limiting representations of numerator
and denominator.

For the denominator of (31) we have:

1

T 2

T[
t=[Tλ]+1

�
xt−1 − x[Tλ]

�2
=

1

T

T[
t=[Tλ]+1

⎛⎝xt−1√
T
− 1

1− λ

1

T

T[
t=[Tλ]+1

xt−1√
T

⎞⎠2

(32)

⇒ σ2η

] 1

λ

�
Jc (v)− 1

1− λ

] 1

λ

Jc (v) dv

�2
dv,

where the second line follows immediately from Lemma 3, the CMT and the definition of integral.

Using (30) we can obtain the limiting distributions of the objects in the numerator of (31):

1

T

T[
t=[Tλ]+1

xt−1εt =
σεη
σ2η

1

T

T[
t=[Tλ]+1

xt−1ηt +
1

T

T[
t=[Tλ]+1

xt−1ut

⇒ σεη

] 1

λ

Jc (v) dWη (v) +
�
σ2εσ

2
η − σ2εη

�1/2 ] 1

λ

Jc (v) dWu (v) ,

and

x[T (1−λ)]ε[T (1−λ)] =

�
1

1− λ

�2⎛⎝ 1

T

T[
t=[Tλ]+1

xt−1√
T

⎞⎠⎛⎝ T[
t=[Tλ]+1

εt−1√
T
−

[Tλ][
t=1

εt−1√
T

⎞⎠
⇒

�
1

1− λ

�2�
ση

] 1

λ

Jc (v) dv

�#
σεη
ση

[Wη (1)−Wη (λ)] +

�
σ2ε − σ2εη

σ2η

�1/2
[Wu (1)−Wu (λ)]

$
.

Finally, collecting terms and noting that W (1)−W (λ) =
U 1
λ
dW (v) we obtain (20).

B.3 Proof of Proposition 7

We first show that eσ2ε is consistent for σ2ε. We have that
rt − r[T ·1] − a1(T )

�
xt−1 − x[T ·1]

�
= εt − ε[T ·1] − (a1(T )− α1)

�
xt−1 − x[T ·1]

�
.

Hence,

eσ2ε =
1

T

T[
t=2

�
εt − ε[T ·1]

�2
+ T 2 (a1(T )− α1)

2 1

T 3

T[
t=2

�
xt−1 − x[T ·1]

�2
−2T (a1(T )− α1)

1

T 2

T[
t=2

�
xt−1 − x[T ·1]

� �
εt − ε[T ·1]

�
→ σ2ε +Op (1)× 1

T
Op (1)− 2×Op (1)× 1

T
Op (1)

= σ2ε + op (1) ,
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so eσ2ε is consistent for σ2ε.
The limiting distribution of F (Tλ) then follows immediately from Propositions 5 and 6, (29) and (32)

after multiplying both numerator and denominator by T 2. From Propositions 5 and 6 we get, after simple
algebraic manipulations, z1(Jc,Wη) and z2(Jc,Wu),

z1 (Jc,Wη) =

U λ
0

k
Jc (v)− 1

λ

U λ
0
Jc (v) dv

l
dWη (v)U λ

0

k
Jc (v)− 1

λ

U λ
0
Jc (v) dv

l2
dv

−
U 1
λ

k
Jc (v)− 1

1−λ
U 1
λ
Jc (v) dv

l
dWη (v)U 1

λ

k
Jc (v)− 1

1−λ
U 1
λ
Jc (v) dv

l2
dv

,

z2 (Jc,Wu) =

U λ
0

k
Jc (v)− 1

λ

U λ
0
Jc (v) dv

l
dWu (v)U λ

0

k
Jc (v)− 1

λ

U λ
0
Jc (v) dv

l2
dv

−
U 1
λ

k
Jc (v)− 1

1−λ
U 1
λ
Jc (v) dv

l
dWu (v)U 1

λ

k
Jc (v)− 1

1−λ
U 1
λ
Jc (v) dv

l2
dv

,

while (29) and (32) give z3(Jc),

z3 (Jc) =

+] λ

0

�
Jc (v)− 1

λ

] λ

0

Jc (v) dv

�2
dv

,−1
+

+] 1

λ

�
Jc (v)− 1

1− λ

] 1

λ

Jc (v) dv

�2
dv

,−1
.
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TABLE 1

Monte Carlo Distributions of the Fluctuation Statistic
Based on the Recursive Variance Ratio

I v R(6,.>.)- V R(6,1) ISup.>.O'>' 1 v R(6,1)

T Percentiles

0.025 0.05 0.10 .25 0.50 0.75 0.90 0.95 0.975

Horizon: /j = 12/840

312 0.100 0.112 0.130 0.169 0.232 0.316 0.398 0.454 0.505
840 0.103 0.117 0.135 0.177 0.241 0.328 0.413 0.467 0.509

1680 0.103 0.115 0.135 0.177 0.241 0.325 0.415 0.468 0.511
2520 0.103 0.115 0.135 0.175 0.242 0.330 0.418 0.468 0.517

Horizon: /j = 60/840

312 0.175 0.202 0.240 0.326 0.455 0.596 0.715 0.779 0.829
840 0.178 0.202 0.240 0.325 0.457 0.599 0.716 0.779 0.820

1680 0.176 0.201 0.241 0.328 0.458 0.598 0.714 0.776 0.832
2520 0.180 0.204 0.241 0.329 0.464 0.604 0.720 0.777 0.821

Horizon: /j = 96/840

312 0.202 0.234 0.280 0.384 0.525 0.674 0.785 0.847 0.896
840 0.207 0.241 0.288 0.393 0.530 0.681 0.793 0.851 0.899

1680 0.209 0.241 0.287 0.388 0.530 0.675 0.791 0.848 0.903
2520 0.208 0.244 0.291 0.397 0.540 0.685 0.794 0.851 0.902

Note: See Notes following Table 10.

TABLE 2

Monte Carlo Distributions of the Fluctuation Statistic
Based on the Reverse-Recursive Variance Ratio

I v R' (6,lI)- V R(6,1) I
sUP6'>'lIo V R(6,1)

T Percent.iles

0.025 0.05 0.10 .25 0.50 0.75 0.90 0.95 0.975

Horizon: /j = 12/840

312 0.103 0.115 0.132 0.170 0.233 0.315 0.400 0.455 0.504
840 0.103 0.116 0.134 0.177 0.242 0.328 0.418 0.471 0.520

1680 0.102 0.116 0.135 0.176 0.242 0.327 0.417 0.474 0.525
2520 0.102 0.115 0.133 0.174 0.239 0.325 0.412 0.469 0.519

Horizon: /j = 60/840

312 0.175 0.199 0.241 0.341 0.482 0.632 0.743 0.800 0.842
840 0.176 0.204 0.245 0.342 0.485 0.634 0.753 0.804 0.843

1680 0.176 0.203 0.244 0.340 0.487 0.637 0.750 0.802 0.841
2520 0.177 0.204 0.244 0.340 0.484 0.634 0.747 0.804 0.843

Horizon: /j = 96/840

312 0.207 0.242 0.294 0.416 0.583 0.734 0.829 0.871 0.903
840 0.212 0.248 0.302 0.427 0.590 0.738 0.831 0.874 0.901

1680 0.207 0.245 0.300 0.427 0.596 0.742 0.836 0.876 0.904
2520 0.209 0.246 0.304 0.428 0.595 0.738 0.833 0.874 0.903

Note: See Notes following Table 10.



TABLE 3

Monte Carlo Distributions of the Fluctuation Statistic Based on
the Recursive Fama-French Regression Statistic

sUPo9511{3(6,.>.) - {3(6, 1)1

T Percentiles

0.025 0.05 0.10 .25 0.50 0.75 0.90 0.95 0.975

Horizon: 6 = 12/840

312 0.070 0.080 0.094 0.124 0.172 0.239 0.310 0.359 0.402
840 0.071 0.081 0.096 0.127 0.177 0.248 0.324 0.374 0.418

1680 0.072 0.082 0.096 0.127 0.178 0.244 0.323 0.374 0.425
2520 0.072 0.081 0.096 0.129 0.179 0.248 0.329 0.383 0.430

Horizon: 6 = 60/840

312 0.122 0.150 0.188 0.275 0.414 0.604 0.790 0.910 1.036
840 0.118 0.145 0.187 0.279 0.424 0.606 0.808 0.939 1.058

1680 0.123 0.150 0.189 0.278 0.422 0.606 0.798 0.936 1.047
2520 0.119 0.149 0.188 0.282 0.426 0.617 0.827 0.966 1.090

Horizon: 6 = 96/840

312 0.140 0.179 0.238 0.364 0.562 0.825 1.112 1.297 1.472
840 0.141 0.180 0.233 0.360 0.559 0.833 1.139 1.321 1.511

1680 0.139 0.182 0.243 0.368 0.570 0.838 1.131 1.316 1.503
2520 0.140 0.176 0.233 0.357 0.564 0.845 1.143 1.331 1.513

Note: See Notes following Table 10.

TABLE 4

Monte Carlo Distributions of the Fluctuation Statistic Based on
the Reverse-Recursive Fama-French Regression Statistic

sUPo9511{3r (6,.>.) - {3(6, 1)1

T Percentiles

0.025 0.05 0.10 .25 0.50 0.75 0.90 0.95 0.975

Horizon: 6 = 12/840

312 0.070 0.079 0.091 0.121 0.167 0.232 0.303 0.351 0.397
840 0.069 0.079 0.094 0.124 0.173 0.240 0.314 0.362 0.407

1680 0.071 0.081 0.094 0.124 0.173 0.242 0.315 0.365 0.414
2520 0.070 0.080 0.094 0.124 0.173 0.240 0.315 0.366 0.407

Horizon: 6 = 60/840

312 0.123 0.146 0.181 0.258 0.379 0.546 0.727 0.842 0.963
840 0.121 0.145 0.182 0.258 0.380 0.546 0.726 0.846 0.944

1680 0.123 0.150 0.185 0.266 0.389 0.560 0.735 0.861 0.966
2520 0.122 0.148 0.184 0.261 0.385 0.545 0.727 0.849 0.955

Horizon: 6 = 96/840

312 0.160 0.191 0.240 0.343 0.505 0.740 0.998 1.180 1.365
840 0.157 0.193 0.239 0.346 0.507 0.737 1.007 1.192 1.374

1680 0.156 0.189 0.236 0.340 0.509 0.750 1.025 1.196 1.374
2520 0.161 0.197 0.241 0.342 0.507 0.742 1.014 1.191 1.351

Note: See Notes following Table 10.



TABLE 5

10% Critical Values for Multivariate Mean-Reversion Tests

and Average Median of Their Asymptotic Distributions

When 95% Confidence Interval for c is [-21.41,2.11]

Statistic u. / u., = 0.963,
P.,., = -0.948

u./u" = 1.270,
P.,., = -0.884

u./U., = 0.960,
p.,., = -0.947

u./U., = 1.270,
P.,., = -0.881

(A) 10% Critical Values

Tal(T) 498.217 642.854 496.871 641.667

max).o9<1 T lal (T>') - al (T)I 1567.919 2018.844 1561.833 2016.238

maxo<).9o T lai: (T>') - al (T)I 1598.715 2033.578 1593.597 2030.080

QLR =max).n:99-).n F(T>') 11.330 10.883 11.322 10.873

(B) Average Median

Tal (T) 89.356 109.766 89.029 109.342

max).n)'<l T lal (T>') - al (T)I 446.309 574.910 444.723 574.405

maxO<).9n T lai: (T>') - al (T)I 457.476 582.819 456.019 581.889

QLR = max).n)'::;l-).n F(T>') 3.640 :.520 3.638 3.515

Note: See notes following Table 10.



TABLE 6

Recursive and Reverse-Recursive Estimates of Fluctuation Statistics for

Log Real Returns on the CRSP Equally-Weighted Portfolio

(1926.01-1995.12)

b(T6, T)
p-value

-0.068
0.040

Full Sample Fama-French Regression Statistic
-0.233 -0.367 -0.484 -0.550 -0.379 -0.193

0.149 0.372 0.506 0.657 0.964 0.979

Recursive Fama-French Regression Statistic
0.073 0.184 0.207 0.205 0.188 0.340

0.992 0.822 0.822 0.873 0.943 0.801
-0.306 -0.551 -0.691 -0.755 -0.191 0.147

1971.06 1950.05 1950.01 1975.02 1975.06 1977.02

Reverse-RecursiveFama-French Regression Statistic
0.233 0.405 0.311 0.254 0.342 0.507
0.516 0.261 0.545 0.760 0.756 0.563

-0.001 0.038 -0.172 -0.296 -0.721 -0.700
1978.04 1973.04 1975.06 1977.06 1973.04 1973.12

-0.325
0.607

Maxlb(T6, TA) - b(T6, T)I

p-value
b(T6, TA)

Date (TA)

0.059
0.993

-0.009
1975.04

0.042
0.977
-0.283

1982.08

Maxlbr(T6, TA) - b(T6, T)I

p-value
br(T6, TA)
Date (TA)

0.387

0.035
-0.455
1978.12

0.098
0.921

-0.227
1951.08

Note: See notes following Table 10.

(

- - -

Hurizon in Muut.hs (Tli)

12 24 36 48 60 96 120 Avrg.

Full Sample Variance Ratio

vr(T6, T) 1.226 1.140 0.970 0.861 0.729 0.349 0.267 0.792
p-value 0.040 0.149 0.372 0.506 0.657 0.964 0.979 0.607

Recursive Variance Ratio

Maxi vr(T6,T.\)-vr(T6,T)I

0.105 0.090 0.111 0.121 0.218 0.671 0.734 0.143vr(T6,T)
p-value 0.972 0.998 0.997 0.996 0.931 0.265 0.232 0.937

vr(T6,TA) 1.097 1.038 0.862 0.757 0.570 0.115 0.071 0.679
Date (TA) 1944.06 1944.12 1945.09 1971.05 1972.02 1950.01 1951.01 1967.06

Reverse-RecursiveVariance Ratio

Maxi vr"(T6,T.\)-vr(T6,T)I

0.273 0.542 0.524 0.468 0.443 1.134 1.214 0.347vr(T6,T)
p-value 0.395 0.107 0.246 0.449 0.567 0.001 0.001 0.600

vrr(T6, TA) 0.891 0.522 0.462 0.458 0.406 0.745 0.591 0.517
Date (TA) 1975.04 1975.10 1976.06 1977.06 1978.06 1956.11 1958.11 1980.07



TABLE 7

---

Recursive and Reverse-Recursive Estimates of Fluctuation Statistics for

Log Real Returns on the CRSP Value-Weighted Portfolio

(1926.01-1995.12)

Horizon in Months (Tb)

12 24 36 48 60 96 120 Avrg.

Full Sample Variance Ratio

vr(Tb, T) 1.166 1.079 0.936 0.799 0.707 0.547 0.556 0.827

p-value 0.087 0.228 0.428 0.608 0.692 0.767 0.676 0.541

Recursive Variance Ratio

max I vr(T6,TA)-vr(T6,T)I
0.072 0.124 0.121 0.141 0.350 0.817 0.825 0.203

vr(T6,T)
p-value 0.999 0.982 0.994 0.989 0.705 0.074 0.107 0.795

vr(Tb, TA) 1.250 1.213 1.049 0.686 0.459 0.100 0.097 0.659

Date (TA) 1975.04 1975.12 1957.07 1948.11 1949.05 1949.06 1950.12 1950.12

Reverse-Recursive Variance Ratio

I vr"(T6.TA)-vr(T6,T)I
0.435 0.679 0.716 0.698 0.657 1.042 1.110 0.531

max vr(T6,T)
p-value 0.082 0.024 0.041 0.108 0.218 0.003 0.002 0.238

vrr(Tb, TA) 0.659 0.347 0.266 0.241 0.242 1.117 1.172 0.388

Dat.e (TA) 1975.05 1976.04 1977.06 1978.06 1979.06 1955.04 1958.11 1980.09

Full Sample Fama-French Regression Statistic

b(Tb, T) -0.067 -0.228 -0.290 -0.173 -0.076 -0.022 -0.191 -0.150

p-value 0.087 0.228 0.428 0.608 0.692 0.767 0.676 0.541

Recursive Fama-French Regression Statistic

max Ib(Tb, T>.) - b(Tb,T)I 0.074 0.079 0.362 0.473 0.510 0.317 0.553 0.070

p-value 0.967 0.987 0.393 0.:315 0.367 0.800 0.562 0.913

b(Tb, T>.) 0.008 -0.306 -0.652 -0.646 -0.587 -0.339 0.361 -0.219

Date (TA) 1956.10 1951.08 1952.10 1949.09 1950.12 1956.04 1964.10 1958.06

Reverse-RecursiveFama-French Regression Statistic

max Ib"(Tb, TA) - b(rb, T)I 0.439 0.160 0.555 0.577 0.374 0.394 0.714 0.198

p-value 0.015 0.780 0.097 0.146 0.515 0.673 0.332 0.649

br(Tb, T>.) -0.506 -0.067 0.265 0.405 0.297 -0.417 -0.906 0.048

Date (TA) 1978.12 1975.02 1953.03 1954.10 1956.09 1973.04 1974.09 1954.10

Note: See notes following Table 10.



TABLE 8

Recursive and Reverse-Recursive Estimates of Fluctuation Statistics for

Log Excess Returns on the CRSP Equally-Weighted Portfolio

(1926.01-1995.12)

Hurizun in Munt.hs (T6)

12 24 36 48 60 96 120 Avrg.

Full Sample Variance Ratio
vr(T6, T) 1.269 1.238 1.111 1.036 0.910 0.458 0.399 0.917

p-value 0.022 0.072 0.184 0.259 0.388 0.874 0.882 0.381
Recursive Variance Ratio

Maxi vr(T6,TA)vrfT6,T) I
0.066 0.071 0.059 0.074 0.149 0.525 0.603 0.105vr(T6,T

p-value 0.999 1.000 1.000 1.000 0.990 0.512 0.447 0.984
vr(T6, T>') 1.185 1.325 1.177 0.959 0.774 0.218 0.158 0.821
Date (T>') 1944.06 1974.12 1978.09 1971.05 1972.02 1950.01 1951.01 1968.05

Reverse-RecursiveVariance Ratio

Maxi vr"(T6,TA)-vr(T6,T) I

0.245 0.502 0.475 0.420 0.383 0.821 0.798 0.371vr(T6,T)
p-value 0.490 0.159 0.331 0.539 0.678 0.113 0.228 0.548

vrr(T6, T>') 0.958 0.617 0.583 0.601 0.561 0.834 0.717 0.577
Date (T>') 1975.04 1975.10 1976.06 1977.06 1978.06 1948.05 1950.05 1980.12

Full Sample Fama-French Regression Statistic

b(T6, T) -0.023 -0.156 -0.291 -0.412 -0.435 -0.119 0.052 -0.198
p-value 0.022 0.072 0.184 0.259 0.388 0.874 0.882 0.381

Recursive Fama-French Regression Statistic

Maxlb(T6, T>.) - b(T6, T)I 0.072 0.053 0.144 0.146 0.126 0.2.10 0.191 0.068
p-value 0.973 0.999 0.908 0.930 0.967 0.921 0.943 0.918

b(T6, T>.) 0.049 -0.209 -0.435 -0.558 -0.561 0.092 -0.139 -0.266

Date (T>') 1946.08 1971.06 1972.12 1973.11 1974.12 1981.01 1970.08 1971.07

Reverse-Recursive Fama-French Regression Statistic

Maxlbr(T6,T>.)- b(T6,T)I 0.379 0.264 0.359 0.258 0.208 0.681 0.739 0.191
p-value 0.039 0.424 0.341 0.676 0.856 0.300 0.309 0.670

br(T6, T>') -0.402 0.108 0.068 -0.153 -0.226 -0.799 -0.687 -0.389
Date (T >.) 1978.12 1978.02 1979.11 1947.01 1948.01 1973.04 1974.03 1975.12

Note: See Notes following Table 10.



TABLE 9

Recursive and Reverse-Recursive Estimates of Fluctuation Statistics for

Log Excess Returns on the CRSP Value- Weighted Portfolio

(1926.01-1995.12)

Horizon in Months (T6)

, 12 24 36 48 60 96 120 Avrg.

Full Sample Variance Ratio

vr(T6, T) 1.209 1.184 1.084 0.977 0.883 0.615 0.646 0.943
p-value 0.051 0.110 0.214 0.330 0.423 0.674 0.557 0.341

Recursive Variance Ratio

Maxi vr(T6,T>.)-vrfT6,T) I 0.084 0.170 0.221 0.215 0.139 0.598 0.661 0.116
vr(T6,T

p-value 0.995 0.908 0.862 0.911 0.994 0.383 0.349 0.974

vr(T6, T>') 1.310 1.386 1.324 1.187 1.006 0.247 0.219 1.052

Date (T>') 1974.12 1956.08 1957.07 1957.07 1959.08 1949.06 1950.12 1978.03
Reverse-Recursive Variance Ratio

Maxi vr"(T6,T>.)-v.-(T6,T)I
0.462 0.741 0.818 0.837 0.822 0.739 0.822 0.687

vr(T6,T)

p-value 0.058 0.011 0.012 0.018 0.037 0.248 0.185 0.049

vrr(T6, T>') 0.651 0.307 0.198 0.159 0.157 0.161 1.177 0.295

Date (T>') 1975.05 1976.04 1977.04 1978.05 1979.05 1980.06 1952.04 1979.07

Full Sample Fama-French Regression Statistic

b(T6, T) -0.016 -0.155 0.245 -0.172 -0.051 0.219 0.076 -0.049

p-value 0.051 0.110 0.214 0.330 0.423 0.674 0.557 0.341

Recursive Fama-French Regression Statistic

Maxlb(T6, T>.) - b(T6, T)I 0.107 0.048 0.256 0.315 0.304 0.162 0.321 0.082

p-value 0.847 0.999 0.627 0.599 0.704 0.961 0.821 0.876

b(T6, T>.) 0.092 -0.107 -0.501 -0.487 -0.354 0.382 0.397 -0.131

Date (T>') 1956.08 1957.08 1947.12 1949.06 1950.12 1957.11 1960.03 1974.02

Reverse-Recursive Fama-French Regression Statistic

Maxlbr(T6, T>.) - b(T6, T)I 0.540 0.266 0.500 0.588 0.437 0.623 0.838 0.304

p-value 0.003 0.417 0.140 0.138 0.402 0.356 0.232 0.354

br(T6, T>.) -0.556 -0.421 0.254 0.416 0.386 -0.403 -0.762 -0.353

Date (T >.) 1978.12 1978.10 1952.10 1950.10 1951.08 1973.04 1974.08 1983.04

Note: See notes following Table 10.



TABLE 10

Multivariate Mean-Reversion Tests on the CRSP Portfolio

(1926.12-1995.12)

(A) Process for the Log Dividend-Price Ratio: x,. =11+ </>X,.-l+ 1/t, </>= 1 + e/T

J>

Dickey-Fuller t-stat for <I>= 1
95% Confidence Interval for c

95% Confidence Interval for <I>

iT.,

0.983
-2.520

[-21.413,2.1071
[0.974,1.002]

0.057

(B) Expected Return Equation: rt = ao + al:1:t-l + €t

Excess EW Ret.Real VW Ret. Real EW Ret. Excess VW Ret.

al (T)
t-statistic

T a} (T)

A,.,

maxAu<A<l T la} (T>') - al (T)I
- al (T>')

Date (T>')

maxO<A9u T la1 (T>') - al (T)I
a1 (TA)

Date (T >.)
QLR = maxAU$A::;1-AuF(T>')

Date (T>')

0.011
1.591
8.716
0.056

-0.948

5.194
0.004

1946.05
11.757
0.025

1953.10
0.905

1968.11

0.018
2.108

15.231
0.073

-0.884

0.010
1.575
8.601
0.055

-0.947

0.Q18
2.093

15.116
0.073

-0.881

10.488
0.031

1951.01
1:3.971
0.035

1969.02
1.223

1968.12

8.496
0.000

1946.05
12.343
0.025

1932.07
1.485

1949.06

6.481
0.010

1968.11
13.450
0.034

1969.01
1.241

1968.12

Note: See Notes following Table 10.



NOTES:

Table 1: Monte Carlo distributions are based on 10,000 simulat.ions of t.he cont.inuous t.ime process for t.he random funct.ional
in the heading of the table. To simulate the process we use discrete approximat.ions of size T. We consider values of T which
are multiples of 840,t.he actual number of mont.hly observat.ions in our sample of one-period log ret.urns (log ret.urns in t.he
NYSE-AMEX-NASDAQ st.ock markets, from 1926.01 t.hrough 1995.12). The values of 6 are set. so t.hat. [T6] equals mult.iples of
12 when T=840. The trimming parameter .AOis set. so 25% of t.he effect.ive sample is used in t.he first recursion. We define t.he
effective sample for the recursive variance-ratio st.atist.ic as [T(1 - 6)1, i.e. t.he tot.alnumber of observations minus those needed
to compute the first [T6]-horizon return observat.ion.

Table 2: Monte Carlo distributions are. based on 10,000 simulat.ions of t.he continuous time process for the random funct.ional
in the heading of t.he table. To simulate the process we use discrete approximations of size T. We consider values of T which
are multiples of 840,the actual number of monthly observations in our sample of one-period log returns (log returns in the
NYSE-AMEX-NASDAQ stock markets, from 1926.01 through 1995.12). The values of 6 are set so that [T6] equals multiples
of 12 when T=840. The trimming parameter .Aois set so 25% of t.he effective sample is used in t.he first recursion. We define
t.he effective sample'for the reverse-recursive variance-ratio st.atistic as [T(1 - 6)], i.e. the total number of observations minus
those needed to compute the first [T6)-horizon return observation.

Table 3: Monte Carlo distributions are based on 10,000 simulations of the continuous time process for the random functional
{3(o,.A). To simulate the process we use discrete approximations of size T. We consider values of T which are multiples of 840,the
actual number of monthly observations in our sample of one-period log returns (log returns in the NYSE-AMEX-N ASDAQ
stock markets, from 1926.01 through 1995.12). The values of 6 are set. so that [T6] equals multiples of 12 when T=840. The
trimming parameter .ADis set so 25% of the effective sample is used in the first. recursion. We define the effective sample for the
recursive Fama-French univariate mean-reversion regression statist.ic as [T(1 - 26)], i.e. t.he tot.al number of observat.ions minus
those needed to compute the first two non-overlapping [T6]-horizon ret.urn observat.ions.

Table 4: Monte Carlo distributions are based on 10,000 simulations of t.he cont.inuous t.ime process for t.he random functional
{3"(6, .A). To simulat.e the process we use discrete approximat.ions of size T. We consider values ofT which are multiples of 840,the
act.ual number of monthly observations in our sample of one-period log returns (log ret.urns in t.he NYSE-AMEX-NASDAQ
stock markets, from 1926.01 through 1995.12). The values of 6 are set. so that. [T6] equals multiples of 12 when T=840. The
trimming parameter .ADis set so 25% of the effective sample is used in the first. recursion. We define t.he effective sample for the
reverse-recursive Fama-French univariate mean-reversion regression statistic as [T(I-26)], i.e.. the total number of observations
minus those needed to compute the first two non-overlapping [T6]-horizon ret.urn observations.

Table 5: Monte Carlo distributions are' based on 10,000 simulations of t.he continuous time process for t.he random
functionals to which the statistics in the first column of t.he t.able converge. These limiting representations are given in
Proposit.ions 5, 6 and 7 and Corollaries 5, 6 and 7 in text., and t.hey depend on t.he nuisance parameters c, u.ju" and P',Tj' To
simulate the processes we use discrete approximations of size T=829, consist.ent. estimates of u., uTjand P'.Tj' and a grid of values
of c in a 95% confidence interval, all based on the data we use in our empirical application--one-period log ret.urns and log
dividend-price ratios in the NYSE-AMEX-NASDAQ stock market.s, from 1926.12 t.hrough 1995.12. The t.rimming parameter.AD
is set to .AD = 25%. The 95% confidence interval for c was comput.ed following the methodology proposed in Stock (1991) and
described in text, Also, the crit.ical values for each statistic reported in Panel A are t.he maximum 95% percentile of t.he set of
distributions for each statistic generated from the grid of values of c, following t.he approach suggested in Wright (1996). This
grid cont.ains 11 equally-spaced values in the 95% confidence int.erval for c and it. includes the ext.reme values in t.he int.erval.
Panel B reports the average median across the set of distribut.ions generat.ed by the grid of values of c.

Tables 6 through 9: Monthly log excess returns are log nominal ret.urns on t.he CRSP (value-weighted or equally weighted)
portfolio inclusive of all securities traded in the NYSE, AMEX and NASDAQ markets in excess of log ret.urns on U.S. Treasury
Bills, as reported in the Indices and SBBI files of the Center for Research in Securit.y Prices (1996). Monthly log real returns
are log nominal returns on this portfolio minus the log rate of change in the Consumer Price Index for All Urban Consumers,
not seasonally adjusted, as reported in the Indices and SBBI files of t.he Center of Research in Security Prices (1996). For
each recursive and reverse-recursive fluctuation stat.istic we report the value of t.he maximum fluctuation stat.istic, it.s p-value
according to its Montecarlo distribution, the value of the variance-rat.io or Fama-Frech univariate regression statist.ic associated
wit.h the maximum fluctuation statistic and the date of the maximum fluct.uat.ion st.atistic. p-values are based on Monte Carlo
dist.ributions involving 10,000 simulat.ions of each t.est.st.at.ist.ic. Each simulat.ion is based on a discrete t.ime approximat.ion 840
observations long (t.he number of months in our sample) t.o a st.andard Brownian Motion process in t.he unit int.erval (Row
T=840 in Tables 1 through 4 report. the deciles for some of t.hese dist.ributions). The Monte Carlo dist.ribut.ions replicat.e t.he



asymptotic distributions of the full sample statistics given in Proposit.ions 1 t.hrough 4 (for). = 1) and t.he maximum fluctuation
statistics given in Corollaries 1 t.hrough 4. The trimming paramet.er >'0 ill t.he recursive and reverse-recursive st.at.istics is set. so
25% of the effective sample (the minimum number of observations needed t.u compute a recursive estimate of each estatistic)

'is used in the first recursion (and reverse-recursion). The "Avrg." culumn refers t.o the mean across horiwns of t.he stat.isc in
t.he corresponding row. For example, the average full sample variance rat.iu st.at.ist.ic in t.he first row equals 2:'0'6 vr(T6, T). The
asymptot.ic distribution of t.he average stat.istics obt.ains immediat.ely from Propusit.iuns 1 t.hruugh 4 and t.he CMT.

Table 10: Munthly log excess ret.urns are log numinal ret.urns UIIt.he CRSP (value-weight.ed or equally weighted) purt.fuliu
inclusive of all securities t.raded in the NYSE, AMEX and NASDAQ markets in excess of log returns on U.S. Treasury Bills,
as report.ed in the Indices and SBEI files of the Cent.er for Research in Securit.y Prices (1996). Monthly log real returns are
log nominal returns on t.his portfolio minus the log rat.e of change in the Consumer Price Index for All Urban Consumers, not.
seasonally adjusted, as repurt.ed in the Indices and SBBI files of t.he Center of Research in Securit.y Prices (1996). Following the
standard convention in the literature, the dividend pric.e ratio at. mont.h t is comput.ed as in Fama and French (1989), i.e., by

computing the moving average (DIP)t = 2:~~0 Dt-d Pt., where Dt and Pt are mont.h t dividend and ex-dividend value of the
portfolio. For each recursive and reverse-recursive fluct.uation st.atist.ic we report t.he value of the maximum fluctuation statistic,
the estimate of the slope associated wit.h the maximum fluctuat.ion st.at.ist.icand the dat.e of the maximum fluct.uat.ion st.atistic.
For the QLR statistic we also report the date it occurrs. The sample values of t.he full sample statistic, fluctuat.ion st.atistics
and QLR statistic in each column should be compared with t.he corresponding column in Table 5 for a 10% significance t.est of
the null Ql =o-full sample stat.istics-and no structual breaks-fluct.uat.ion stat.istics and QLR statistic.

---



Horizon:6 = 12/840. Wean(P)= 0.26: StD.(a) = 0.11: 0/11=0.43. Harizan: 6 = 12/840. Wean(P) = 0.20; St.D.(a) = 0.09: ah~ = 0.47.
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