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A STEP-BY-STEP GUIDE TO THE BLACK-LITTERMAN MODEL 

Incorporating user-specified confidence levels 

ABSTRACT 
 

The Black-Litterman model enables investors to combine their unique views 

regarding the performance of various assets with the market equilibrium in a manner that 

results in intuitive, diversified portfolios.  This paper consolidates insights from the 

relatively few works on the model and provides step-by-step instructions that enable the 

reader to implement this complex model.  A new method for controlling the tilts and the 

final portfolio weights caused by views is introduced.  The new method asserts that the 

magnitude of the tilts should be controlled by the user-specified confidence level based 

on an intuitive 0% to 100% confidence level.  This is an intuitive technique for specifying 

one of most abstract mathematical parameters of the Black-Litterman model. 

 



 

A STEP-BY-STEP GUIDE TO THE BLACK-LITTERMAN MODEL 

Incorporating user-specified confidence levels 

Having attempted to decipher many of the articles about the Black-Litterman 

model, none of the relatively few articles provide enough step-by-step instructions for the 

average practitioner to derive the new vector of expected returns.1  This article touches 

on the intuition of the Black-Litterman model, consolidates insights contained in the 

various works on the Black-Litterman model, and focuses on the details of actually 

combining market equilibrium expected returns with “investor views” to generate a new 

vector of expected returns.  Finally, I make a new contribution to the model by presenting 

a method for controlling the magnitude of the tilts caused by the views that is based on an 

intuitive 0% to 100% confidence level, which should broaden the usability of the model 

beyond quantitative managers. 

 

Introduction 

The Black-Litterman asset allocation model, created by Fischer Black and Robert 

Litterman, is a sophisticated portfolio construction method that overcomes the problem of 

unintuitive, highly-concentrated portfolios, input-sensitivity, and estimation error 

maximization.  These three related and well-documented problems with mean-variance 

optimization are the most likely reasons that more practitioners do not use the Markowitz 

paradigm, in which return is maximized for a given level of risk.  The Black-Litterman 

model uses a Bayesian approach to combine the subjective views of an investor regarding 

the expected returns of one or more assets with the market equilibrium vector of expected 

returns (the prior distribution) to form a new, mixed estimate of expected returns. The 
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resulting new vector of returns (the posterior distribution), leads to intuitive portfolios 

with sensible portfolio weights.  Unfortunately, the building of the required inputs is 

complex and has not been thoroughly explained in the literature.  

The Black-Litterman asset allocation model was introduced in Black and 

Litterman (1990), expanded in Black and Litterman (1991, 1992), and discussed in 

greater detail in Bevan and Winkelmann (1998), He and Litterman (1999), and Litterman 

(2003).2  The Black Litterman model combines the CAPM (see Sharpe (1964)), reverse 

optimization (see Sharpe (1974)), mixed estimation (see Theil (1971, 1978)), the 

universal hedge ratio / Black’s global CAPM (see Black (1989a, 1989b) and Litterman 

(2003)), and mean-variance optimization (see Markowitz (1952)). 

Section 1 illustrates the sensitivity of mean-variance optimization and how 

reverse optimization mitigates this problem.  Section 2 presents the Black-Litterman 

model and the process of building the required inputs.  Section 3 develops an implied 

confidence framework for the views.  This framework leads to a new, intuitive method 

for incorporating the level of confidence in investor views that helps investors control the 

magnitude of the tilts caused by views.   

1 Expected Returns 

The Black-Litterman model creates stable, mean-variance efficient portfolios, 

based on an investor’s unique insights, which overcome the problem of input-sensitivity. 

According to Lee (2000), the Black-Litterman model also “largely mitigates” the problem 

of estimation error-maximization (see Michaud (1989)) by spreading the errors 

throughout the vector of expected returns.   
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The most important input in mean-variance optimization is the vector of expected 

returns; however, Best and Grauer (1991) demonstrate that a small increase in the 

expected return of one of the portfolio's assets can force half of the assets from the 

portfolio.  In a search for a reasonable starting point for expected returns, Black and 

Litterman (1992), He and Litterman (1999), and Litterman (2003) explore several 

alternative forecasts: historical returns, equal “mean” returns for all assets, and risk-

adjusted equal mean returns.  They demonstrate that these alternative forecasts lead to 

extreme portfolios – when unconstrained, portfolios with large long and short positions; 

and, when subject to a long only constraint, portfolios that are concentrated in a relatively 

small number of assets. 

1.1 Reverse Optimization 

The Black-Litterman model uses “equilibrium” returns as a neutral starting point.  

Equilibrium returns are the set of returns that clear the market.  The equilibrium returns 

are derived using a reverse optimization method in which the vector of implied excess 

equilibrium returns is extracted from known information using Formula 1:3

 mktwΣ=Π λ  (1) 
 

where 
 
Π   is the Implied Excess Equilibrium Return Vector (N x 1 column vector); 
λ   is the risk aversion coefficient; 
Σ   is the covariance matrix of excess returns (N x N matrix); and, 

mktw  is the market capitalization weight (N x 1 column vector) of the assets.4

 
The risk-aversion coefficient (λ ) characterizes the expected risk-return tradeoff.  

It is the rate at which an investor will forego expected return for less variance.  In the 

reverse optimization process, the risk aversion coefficient acts as a scaling factor for the 

reverse optimization estimate of excess returns; the weighted reverse optimized excess 
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returns equal the specified market risk premium.  More excess return per unit of risk (a 

larger lambda) increases the estimated excess returns.5

To illustrate the model, I present an eight asset example in addition to the general 

model.  To keep the scope of the paper manageable, I avoid discussing currencies.6   

Table 1 presents four estimates of expected excess return for the eight assets – US 

Bonds, International Bonds, US Large Growth, US Large Value, US Small Growth, US 

Small Value, International Developed Equity, and International Emerging Equity.  The 

first CAPM excess return vector in Table 1 is calculated relative to the UBS Global 

Securities Markets Index (GSMI), a global index and a good proxy for the world market 

portfolio.  The second CAPM excess return vector is calculated relative to the market 

capitalization-weighted portfolio using implied betas and is identical to the Implied 

Equilibrium Return Vector (Π ).7

Table 1  Expected Excess Return Vectors 

 Asset Class 

Historical 
Histμ  

CAPM GSMI 
GSMIμ  

CAPM 
Portfolio 

Pμ  

Implied 
Equilibrium 

Return 
Vector 
Π  

US Bonds  3.15%  0.02%  0.08%  0.08% 
Int’l Bonds  1.75%  0.18%  0.67%  0.67% 

US Large Growth  -6.39%  5.57%  6.41%  6.41% 
US Large Value  -2.86%  3.39%  4.08%  4.08% 

US Small Growth  -6.75%  6.59%  7.43%  7.43% 
US Small Value  -0.54%  3.16%  3.70%  3.70% 
Int’l Dev. Equity  -6.75%  3.92%  4.80%  4.80% 

Int’l Emerg. Equity  -5.26%  5.60%  6.60%  6.60% 
     

Weighted Average  -1.97%  2.41%  3.00%  3.00% 
Standard Deviation  3.73%  2.28%  2.53%  2.53% 

     
High  3.15%  6.59%  7.43%  7.43% 
Low  -6.75%  0.02%  0.08%  0.08% 

* All four estimates are based on 60 months of excess returns over the risk-free rate.  The two CAPM 
estimates are based on a risk premium of 3.  Dividing the risk premium by the variance of the market (or 
benchmark) excess returns ( ) results in a risk-aversion coefficient (2σ λ ) of approximately 3.07.  
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The Historical Return Vector has a larger standard deviation and range than the 

other vectors.  The first CAPM Return Vector is quite similar to the Implied Equilibrium 

Return Vector (Π ) (the correlation coefficient is 99.8%).   

Rearranging Formula 1 and substitutingμ (representing any vector of excess return) 

for Π  (representing the vector of Implied Excess Equilibrium Returns) leads to Formula 2, 

the solution to the unconstrained maximization problem: 2/''max www
w

Σ− λμ .  

  (2) ( ) μλ 1−Σ=w
 
If μ does not equal Π , w will not equal . mktw

In Table 2, Formula 2 is used to find the optimum weights for three portfolios based 

on the return vectors from Table 1.  The market capitalization weights are presented in the 

final column of Table 2. 

Table 2  Recommended Portfolio Weights 

 Asset Class 

Weight 
Based on 
Historical 

Histw  

Weight 
Based on 

CAPM GSMI 
GSMIw  

Weight 
Based on 
Implied 

Equilibrium 
Return 
Vector 
Π  

Market 
Capitalization 

Weight 
mktw  

US Bonds  1144.32%  21.33%  19.34%  19.34% 
Int’l Bonds  -104.59%  5.19%  26.13%  26.13% 

US Large Growth  54.99%  10.80%  12.09%  12.09% 
US Large Value  -5.29%  10.82%  12.09%  12.09% 

US Small Growth  -60.52%  3.73%  1.34%  1.34% 
US Small Value  81.47%  -0.49%  1.34%  1.34% 
Int’l Dev. Equity  -104.36%  17.10%  24.18%  24.18% 

Int’l Emerg. Equity  14.59%  2.14%  3.49%  3.49% 
     

High  1144.32%  21.33%  26.13%  26.13% 
Low  -104.59%  -0.49%  1.34%  1.34% 

 

Not surprisingly, the Historical Return Vector produces an extreme portfolio.  

Those not familiar with mean-variance optimization might expect two highly correlated 

return vectors to lead to similarly correlated vectors of portfolio holdings. Nevertheless, 
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despite the similarity between the CAPM GSMI Return Vector and the Implied 

Equilibrium Return Vector (Π ), the return vectors produce two rather distinct weight 

vectors (the correlation coefficient is 66%).  Most of the weights of the CAPM GSMI-

based portfolio are significantly different than the benchmark market capitalization-

weighted portfolio, especially the allocation to International Bonds.  As one would expect 

(since the process of extracting the Implied Equilibrium returns using the market 

capitalization weights is reversed), the Implied Equilibrium Return Vector ( ) leads 

back to the market capitalization-weighted portfolio. In the absence of views that differ 

from the Implied Equilibrium return, investors should hold the market portfolio. The 

Implied Equilibrium Return Vector (

Π

Π ) is the market-neutral starting point for the 

Black-Litterman model. 

 

2 The Black-Litterman Model 

2.1 The Black-Litterman Formula 

Prior to advancing, it is important to introduce the Black-Litterman formula and 

provide a brief description of each of its elements.  Throughout this article, K is used to 

represent the number of views and N is used to express the number of assets in the 

formula.  The formula for the new Combined Return Vector ( ) is ][RE

 ( )[ ] ( )[ ]QPPPRE 11111 ''][ −−−−− Ω+ΠΣΩ+Σ= ττ  (3) 

where 
 

][RE  is the new (posterior) Combined Return Vector (N x 1 column vector); 
τ  is a scalar; 
Σ  is the covariance matrix of excess returns (N x N matrix); 
P  is a matrix that identifies the assets involved in the views (K x N matrix or 

1 x N row vector in the special case of 1 view); 
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Ω  is a diagonal covariance matrix of error terms from the expressed views 
representing the uncertainty in each view (K x K matrix); 

Π  is the Implied Equilibrium Return Vector (N x 1 column vector); and, 
Q  is the View Vector (K x 1 column vector). 
 

2.2 Investor Views 

More often than not, investment managers have specific views regarding the 

expected return of some of the assets in a portfolio, which differ from the Implied 

Equilibrium return.  The Black-Litterman model allows such views to be expressed in 

either absolute or relative terms.  Below are three sample views expressed using the 

format of Black and Litterman (1990). 

View 1:  International Developed Equity will have an absolute excess return of 
5.25% (Confidence of View = 25%). 

View 2:  International Bonds will outperform US Bonds by 25 basis points 
(Confidence of View = 50%). 

View 3:  US Large Growth and US Small Growth will outperform US Large 
Value and US Small Value by 2% (Confidence of View = 65%). 

 

View 1 is an example of an absolute view.  From the final column of Table 1, the 

Implied Equilibrium return of International Developed Equity is 4.80%, which is 45 basis 

points lower than the view of 5.25%.  

Views 2 and 3 represent relative views.  Relative views more closely approximate 

the way investment managers feel about different assets.  View 2 says that the return of 

International Bonds will be 0.25% greater than the return of US Bonds.  In order to gauge 

whether View 2 will have a positive or negative effect on International Bonds relative to 

US Bonds, it is necessary to evaluate the respective Implied Equilibrium returns of the 

two assets in the view.  From Table 1, the Implied Equilibrium returns for International 

Bonds and US Bonds are 0.67% and 0.08%, respectively, for a difference of 0.59%.  The 

view of 0.25%, from View 2, is less than the 0.59% by which the return of International 
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Bonds exceeds the return of US Bonds; thus, one would expect the model to tilt the 

portfolio away from International Bonds in favor of US Bonds. In general (and in the 

absence of constraints and additional views), if the view is less than the difference 

between the two Implied Equilibrium returns, the model tilts the portfolio toward the 

underperforming asset, as illustrated by View 2.  Likewise, if the view is greater than the 

difference between the two Implied Equilibrium returns, the model tilts the portfolio 

toward the outperforming asset. 

View 3 demonstrates a view involving multiple assets and that the terms 

“outperforming” and “underperforming” are relative.  The number of outperforming 

assets need not match the number of assets underperforming. The results of views that 

involve multiple assets with a range of different Implied Equilibrium returns can be less 

intuitive.  The assets of the view form two separate mini-portfolios, a long portfolio and a 

short portfolio. The relative weighting of each nominally outperforming asset is 

proportional to that asset’s market capitalization divided by the sum of the market 

capitalization of the other nominally outperforming assets of that particular view.  

Likewise, the relative weighting of each nominally underperforming asset is proportional 

to that asset’s market capitalization divided by the sum of the market capitalizations of 

the other nominally underperforming assets.  The net long positions less the net short 

positions equal 0.  The mini-portfolio that actually receives the positive view may not be 

the nominally outperforming asset(s) from the expressed view.  In general, if the view is 

greater than the weighted average Implied Equilibrium return differential, the model will 

tend to overweight the “outperforming” assets.  
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From View 3, the nominally “outperforming” assets are US Large Growth and US 

Small Growth and the nominally “underperforming” assets are US Large Value and US 

Small Value.  From Table 3a, the weighted average Implied Equilibrium return of the 

mini-portfolio formed from US Large Growth and US Small Growth is 6.52%.  And, 

from Table 3b, the weighted average Implied Equilibrium return of the mini-portfolio 

formed from US Large Value and US Small Value is 4.04%.  The weighted average 

Implied Equilibrium return differential is 2.47%. 

Table 3a  View 3 – Nominally “Outperforming” Assets 

 Asset Class 

 Market 
Capitalization 

(Billions)  
Relative 
Weight 

Implied 
Equilibrium 

Return 
Vector 
Π  

 Weighted 
Excess 
Return  

US Large Growth  $5,174   90.00%  6.41%  5.77% 
US Small Growth   $575   10.00%  7.43%  0.74% 

   $5,749   100.00%  Total  6.52% 

 
Table 3b  View 3 – Nominally “Underperforming” Assets  

 Asset Class 

 Market 
Capitalization 

(Billions)  
Relative 
Weight 

Implied 
Equilibrium 

Return 
Vector 
Π  

 Weighted 
Excess 
Return  

US Large Value  $5,174   90.00%  4.08%  3.67% 
US Small Value   $575   10.00%  3.70%  0.37% 

   $5,749   100.00%  Total  4.04% 

 
Because View 3 states that US Large Growth and US Small Growth will 

outperform US Large Value and US Small Value by only 2% (a reduction from the 

current weighted average Implied Equilibrium differential of 2.47%), the view appears to 

actually represent a reduction in the performance of US Large Growth and US Small 

Growth relative to US Large Value and US Small Value.  This point is illustrated below 

in the final column of Table 6, where the nominally outperforming assets of View 3 – US 

Large Growth and US Small Growth – receive reductions in their allocations and the 
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nominally underperforming assets – US Large Value and US Small Value – receive 

increases in their allocations.   

2.3 Building the Inputs 

One of the more confusing aspects of the model is moving from the stated views 

to the inputs used in the Black-Litterman formula.  First, the model does not require that 

investors specify views on all assets.  In the eight asset example, the number of views (k) 

is 3; thus, the View Vector ( ) is a 3 x 1 column vector. The uncertainty of the views 

results in a random, unknown, independent, normally-distributed Error Term Vector (

Q

ε ) 

with a mean of 0 and covariance matrix Ω .  Thus, a view has the form ε+Q . 

General Case: Example: (4) 
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⎣

⎡
=+

kkQ

Q
Q
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ε
ε MM
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⎥
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⎢
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⎣
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

k

Q
ε

ε
ε M

1

2
25.0
25.5

Except in the hypothetical case in which a clairvoyant investor is 100% confident 

in the expressed view, the error term (ε ) is a positive or negative value other than 0.  The 

Error Term Vector (ε ) does not directly enter the Black-Litterman formula.  However, 

the variance of each error term (ω ), which is the absolute difference from the error 

term’s (ε ) expected value of 0, does enter the formula. The variances of the error terms 

(ω ) form Ω , where Ω is a diagonal covariance matrix with 0’s in all of the off-diagonal 

positions.  The off-diagonal elements of Ω are 0’s because the model assumes that the 

views are independent of one another. The variances of the error terms (ω ) represent the 

uncertainty of the views. The larger the variance of the error term (ω ), the greater the 

uncertainty of the view.  
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General Case:  (5) 

  
⎥
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⎦

⎤

⎢
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⎡
=Ω

kω

ω

00
00
001

O

Determining the individual variances of the error terms (ω ) that constitute the 

diagonal elements of  is one of the most complicated aspects of the model.  It is 

discussed in greater detail below and is the subject of Section 3. 

Ω

The expressed views in column vector Q are matched to specific assets by Matrix 

P.  Each expressed view results in a 1 x N row vector.  Thus, K views result in a K x N 

matrix.  In the three-view example presented in Section 2.2, in which there are 8 assets, P 

is a 3 x 8 matrix.  

 Example (Based on  
General Case: Satchell and Scowcroft (2000)): (6)  
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−−
−=

005.5.5.5.00
00000011
01000000

P

The first row of Matrix P represents View 1, the absolute view.  View 1 only 

involves one asset: International Developed Equity.  Sequentially, International 

Developed Equity is the 7th asset in this eight asset example, which corresponds with the 

“1” in the 7th column of Row 1.  View 2 and View 3 are represented by Row 2 and Row 

3, respectively.  In the case of relative views, each row sums to 0.  In Matrix P, the 

nominally outperforming assets receive positive weightings, while the nominally 

underperforming assets receive negative weightings. 

Methods for specifying the values of Matrix P vary.  Litterman (2003, p. 82) 

assigns a percentage value to the asset(s) in question. Satchell and Scowcroft (2000) use 
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an equal weighting scheme, which is presented in Row 3 of Formula 6.  Under this 

system, the weightings are proportional to 1 divided by the number of respective assets 

outperforming or underperforming.  View 3 has two nominally underperforming assets, 

each of which receives a -.5 weighting.  View 3 also contains two nominally 

outperforming assets, each receiving a +.5 weighting.  This weighting scheme ignores the 

market capitalization of the assets involved in the view.  The market capitalizations of the 

US Large Growth and US Large Value asset classes are nine times the market 

capitalizations of US Small Growth and Small Value asset classes; yet, the Satchell and 

Scowcroft method affects their respective weights equally, causing large changes in the 

two smaller asset classes.  This method may result in undesired and unnecessary tracking 

error. 

Contrasting with the Satchell and Scowcroft (2000) equal weighting scheme, I 

prefer to use to use a market capitalization weighting scheme.  More specifically, the 

relative weighting of each individual asset is proportional to the asset’s market 

capitalization divided by the total market capitalization of either the outperforming or 

underperforming assets of that particular view.  From the third column of Tables 3a and 

3b, the relative market capitalization weights of the nominally outperforming assets are 

0.9 for US Large Growth and 0.1 for US Small Growth, while the relative market 

capitalization weights of the nominally underperforming assets are -.9 for US Large 

Value and -.1 for US Small Value. These figures are used to create a new Matrix P, 

which is used for all of the subsequent calculations. 
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Matrix P (Market capitalization method):  (7)  
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⎥
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⎢
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⎡

−−
−=

001.1.9.9.00
00000011
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P  

 

Once Matrix P is defined, one can calculate the variance of each individual view 

portfolio. The variance of an individual view portfolio is , where is a single 1 x 

N row vector from Matrix P that corresponds to the kth view and 

'
kk pp Σ kp

Σ is the covariance 

matrix of excess returns.  The variances of the individual view portfolios ( ) are 

presented in Table 4. The respective variance of each individual view portfolio is an 

important source of information regarding the certainty, or lack thereof, of the level of 

confidence that should be placed on a view.  This information is used shortly to revisit 

the variances of the error terms (

'
kk pp Σ

ω ) that form the diagonal elements of . Ω

Table 4  Variance of the View Portfolios 

View Formula Variance 

1 '
11 pp Σ   2.836% 

2 '
22 pp Σ   0.563% 

3 '
33 pp Σ   3.462% 

 

Conceptually, the Black-Litterman model is a complex, weighted average of the 

Implied Equilibrium Return Vector (Π ) and the View Vector (Q ), in which the relative 

weightings are a function of the scalar (τ ) and the uncertainty of the views ( ). 

Unfortunately, the scalar and the uncertainty in the views are the most abstract and 

difficult to specify parameters of the model. The greater the level of confidence 

(certainty) in the expressed views, the closer the new return vector will be to the views.  

Ω
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If the investor is less confident in the expressed views, the new return vector should be 

closer to the Implied Equilibrium Return Vector (Π ).  

The scalar (τ ) is more or less inversely proportional to the relative weight given 

to the Implied Equilibrium Return Vector (Π ).  Unfortunately, guidance in the literature 

for setting the scalar’s value is scarce.  Both Black and Litterman (1992) and Lee (2000) 

address this issue: since the uncertainty in the mean is less than the uncertainty in the 

return, the scalar (τ ) is close to zero.  One would expect the Equilibrium Returns to be 

less volatile than the historical returns.8   

Lee, who has considerable experience working with a variant of the Black-

Litterman model, typically sets the value of the scalar (τ ) between 0.01 and 0.05, and 

then calibrates the model based on a target level of tracking error.9 Conversely, Satchell 

and Scowcroft (2000) say the value of the scalar (τ ) is often set to 1.10  Finally, Blamont 

and Firoozye (2003) interpret Στ  as the standard error of estimate of the Implied 

Equilibrium Return Vector (Π ); thus, the scalar (τ ) is approximately 1 divided by the 

number of observations. 

In the absence of constraints, the Black-Litterman model only recommends a 

departure from an asset’s market capitalization weight if it is the subject of a view.  For 

assets that are the subject of a view, the magnitude of their departure from their market 

capitalization weight is controlled by the ratio of the scalar (τ ) to the variance of the 

error term (ω ) of the view in question.  The variance of the error term (ω ) of a view is 

inversely related to the investor’s confidence in that particular view.  Thus, a variance of 

the error term (ω ) of 0 represents 100% confidence (complete certainty) in the view.  

The magnitude of the departure from the market capitalization weights is also affected by 
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other views.  Additional views lead to a different Combined Return Vector ( ), 

which leads to a new vector of recommended weights. 

][RE

The easiest way to calibrate the Black-Litterman model is to make an assumption 

about the value of the scalar (τ ).  He and Litterman (1999) calibrate the confidence of a 

view so that the ratio of τω  is equal to the variance of the view portfolio ( ).  

Assuming 

'
kk pp Σ

τ  = 0.025 and using the individual variances of the view portfolios ( ) 

from Table 4, the covariance matrix of the error term (

'
kk pp Σ

Ω ) has the following form: 

General Case: Example: (8) 
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000014100
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.
.

.

When the covariance matrix of the error term (Ω ) is calculated using this method, 

the actual value of the scalar (τ ) becomes irrelevant because only the ratio τω / enters 

the model.  For example, changing the assumed value of the scalar (τ ) from 0.025 to 15 

dramatically changes the value of the diagonal elements of Ω , but the new Combined 

Return Vector ( ) is unaffected.   ][RE

2.4 Calculating the New Combined Return Vector 

Having specified the scalar (τ ) and the covariance matrix of the error term (Ω ), 

all of the inputs are then entered into the Black-Litterman formula and the New 

Combined Return Vector ( ) is derived. The process of combining the two sources of 

information is depicted in Figure 1.  The New Recommended Weights ( ) are calculated 

by solving the unconstrained maximization problem, Formula 2.  The covariance matrix 

of historical excess returns (Σ ) is presented in Table 5. 

][RE

ŵ
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Figure 1  Deriving the New Combined Return Vector ( )  ][RE
 

* The va ance of the New Combined Return Distribution is derived in Satchell and Scowcroft (2000). ri
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Table 5  Covariance Matrix of Excess Returns (Σ ) 

     Asset Class 
US 

Bonds 
Int’l 

Bonds 
US Large 
Growth 

US Large 
Value 

US Small 
Growth 

US Small 
Value 

Int’l Dev. 
Equity 

Int’l. 
Emerg. 
Equity 

US Bonds 0.001005 0.001328 -0.000579 -0.000675 0.000121 0.000128 -0.000445 -0.000437 

Int’l Bonds 0.001328 0.007277 -0.001307 -0.000610 -0.002237 -0.000989 0.001442 -0.001535 

US Large Growth -0.000579 -0.001307 0.059852 0.027588 0.063497 0.023036 0.032967 0.048039 

US Large Value -0.000675 -0.000610 0.027588 0.029609 0.026572 0.021465 0.020697 0.029854 

US Small Growth 0.000121 -0.002237 0.063497 0.026572 0.102488 0.042744 0.039943 0.065994 

US Small Value 0.000128 -0.000989 0.023036 0.021465 0.042744 0.032056 0.019881 0.032235 

Int’l Dev. Equity -0.000445 0.001442 0.032967 0.020697 0.039943 0.019881 0.028355 0.035064 

Int’l Emerg. Equity -0.000437 -0.001535 0.048039 0.029854 0.065994 0.032235 0.035064 0.079958 

 

Even though the expressed views only directly involved 7 of the 8 asset classes, 

the individual returns of all the assets changed from their respective Implied Equilibrium 

returns (see column 4 of Table 6).  A single view causes the return of every asset in the 

portfolio to change from its Implied Equilibrium return, since each individual return is 

linked to the other returns via the covariance matrix of excess returns (Σ ). 

Table 6  Return Vectors and Resulting Portfolio Weights  

Asset Class 

New 
Combined 

Return 
Vector 

][RE  

Implied 
Equilibrium 

Return 
Vector 
Π  

Difference 
Π−][RE  

New   
Weight 

ŵ  

Market 
Capitalization 

Weight 
mktw  

Difference 
mktww −ˆ  

US Bonds  0.07%  0.08%  -0.02% 29.88%  19.34%  10.54% 
Int’l Bonds  0.50%  0.67%  -0.17% 15.59%  26.13%  -10.54% 

US Large Growth  6.50%  6.41%  0.08% 9.35%  12.09%  -2.73% 
US Large Value  4.32%  4.08%  0.24% 14.82%  12.09%  2.73% 

US Small Growth  7.59%  7.43%  0.16% 1.04%  1.34%  -0.30% 
US Small Value  3.94%  3.70%  0.23% 1.65%  1.34%  0.30% 
Int’l Dev. Equity  4.93%  4.80%  0.13% 27.81%  24.18%  3.63% 

Int’l Emerg. Equity  6.84%  6.60%  0.24% 3.49%  3.49%  0.00% 
       

   Sum 103.63%  100.00%  3.63% 

 

The New Weight Vector ( ) in column 5 of Table 6 is based on the New 

Combined Return Vector ( ).  One of the strongest features of the Black-Litterman 

model is illustrated in the final column of Table 6.  Only the weights of the 7 assets for 

which views were expressed changed from their original market capitalization weights 

ŵ

][RE
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and the directions of the changes are intuitive.11  No views were expressed on 

International Emerging Equity and its weights are unchanged.   

From a macro perspective, the new portfolio can be viewed as the sum of two 

portfolios, where Portfolio 1 is the original market capitalization-weighted portfolio, and 

Portfolio 2 is a series of long and short positions based on the views.  As discussed 

earlier, Portfolio 2 can be subdivided into mini-portfolios, each associated with a specific 

view.  The relative views result in mini-portfolios with offsetting long and short positions 

that sum to 0.  View 1, the absolute view, increases the weight of International Developed 

Equity without an offsetting position, resulting in portfolio weights that no longer sum to 

1. 

The intuitiveness of the Black-Litterman model is less apparent with added 

investment constraints, such as constraints on unity, risk, beta, and short selling.  He and 

Litterman (1999) and Litterman (2003) suggest that, in the presence of constraints, the 

investor input the New Combined Return Vector ( ) into a mean-variance optimizer. ][RE

2.5 Fine Tuning the Model 

One can fine tune the Black-Litterman model by studying the New Combined 

Return Vector ( ), calculating the anticipated risk-return characteristics of the new 

portfolio and then adjusting the scalar (

][RE

τ ) and the individual variances of the error term 

(ω ) that form the diagonal elements of the covariance matrix of the error term ( ). Ω

Bevan and Winkelmann (1998) offer guidance in setting the weight given to the 

View Vector ( ).  After deriving an initial Combined Return Vector ( ) and the 

subsequent optimum portfolio weights, they calculate the anticipated Information Ratio 

of the new portfolio.  They recommend a maximum anticipated Information Ratio of 2.0.  

Q ][RE
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If the Information Ratio is above 2.0, decrease the weight given to the views (decrease 

the value of the scalar and leave the diagonal elements of Ω  unchanged). 

Table 8 compares the anticipated risk-return characteristics of the market 

capitalization-weighted portfolio with the Black-Litterman portfolio (the new weights 

produced by the New Combined Return Vector).12  Overall, the views have very little 

effect on the expected risk return characteristics of the new portfolio.  However, both the 

Sharpe Ratio and the Information Ratio increased slightly.  The ex ante Information Ratio 

is well below the recommended maximum of 2.0.  

Table 8  Portfolio Statistics 

 

Market 
Capitalization-

Weighted 
Portfolio 

mktw  

Black-Litterman 
Portfolio 

ŵ  
Excess Return 3.000%  3.101% 

Variance 0.00979  0.01012 
Standard Deviation 9.893%  10.058% 

Beta 1  1.01256 
Residual Return --  0.063% 

Residual Risk --  0.904% 
Active Return --  0.101% 

Active Risk --  0.913% 
Sharpe Ratio 0.3033  0.3083 

Information Ratio --  0.0699 

 

Next, the results of the views should be evaluated to confirm that there are no 

unintended results. For example, investors confined to unity may want to remove 

absolute views, such as View 1.   

Investors should evaluate their ex post Information Ratio for additional guidance 

when setting the weight on the various views.  An investment manager who receives 

“views” from a variety of analysts, or sources, could set the level of confidence of a 

particular view based in part on that particular analyst’s information coefficient.  

According to Grinold and Kahn (1999), a manager’s information coefficient is the 
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correlation of forecasts with the actual results.  This gives greater relative importance to 

the more skillful analysts. 

Most of the examples in the literature, including the eight asset example presented 

here, use a simple covariance matrix of historical returns. However, investors should use 

the best possible estimate of the covariance matrix of excess returns.  Litterman and 

Winkelmann (1998) and Litterman (2003) outline the methods they prefer for estimating 

the covariance matrix of returns, as well as several alternative methods of estimation.  

Qian and Gorman (2001) extends the Black-Litterman model, enabling investors to 

express views on volatilities and correlations in order to derive a conditional estimate of 

the covariance matrix of returns. They assert that the conditional covariance matrix 

stabilizes the results of mean-variance optimization. 

3 A New Method for Incorporating User-Specified Confidence Levels 

As the discussion above illustrates, Ω  is the most abstract mathematical 

parameter of the Black-Litterman model.  Unfortunately, according to Litterman (2003), 

how to specify the diagonal elements of Ω , representing the uncertainty of the views, is a 

common question without a “universal answer.”  Regarding Ω , Herold (2003) says that 

the major difficulty of the Black-Litterman model is that it forces the user to specify a 

probability density function for each view, which makes the Black-Litterman model only 

suitable for quantitative managers.  This section presents a new method for determining 

the implied confidence levels in the views and how an implied confidence level 

framework can be coupled with an intuitive 0% to 100% user-specified confidence level 

in each view to determine the values of Ω , which simultaneously removes the difficulty 

of specifying a value for the scalar (τ ). 
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3.1 Implied Confidence Levels 

Earlier, the individual variances of the error term (ω ) that form the diagonal 

elements of the covariance matrix of the error term (Ω ) were based on the variances of 

the view portfolios ( ) multiplied by the scalar ('
kk pp Σ τ ).  However, it is my opinion that 

there may be other sources of information in addition to the variance of the view portfolio 

( ) that affect an investor’s confidence in a view.  When each view was stated, an 

intuitive level of confidence (0% to 100%) was assigned to each view.  Presumably, 

additional factors can affect an investor’s confidence in a view, such as the historical 

accuracy or score of the model, screen, or analyst that produced the view, as well as the 

difference between the view and the implied market equilibrium.  These factors, and 

perhaps others, should be combined with the variance of the view portfolio ( ) to 

produce the best possible estimates of the confidence levels in the views.  Doing so will 

enable the Black-Litterman model to maximize an investor’s information. 

'
kk pp Σ

'
kk pp Σ

Setting all of the diagonal elements of Ω  equal to zero is equivalent to specifying 

100% confidence in all of the K views. Ceteris paribus, doing so will produce the largest 

departure from the benchmark market capitalization weights for the assets named in the 

views.  When 100% confidence is specified for all of the views, the Black-Litterman 

formula for the New Combined Return Vector under 100% certainty ( ) is  ][ %100RE

 ( ) ( )Π−ΣΣ+Π= − PQPPPRE 1
%100 ''][ ττ  (9) 

To distinguish the result of this formula from the first Black-Litterman Formula (Formula 

3) the subscript 100% is added. Substituting for ][ %100RE μ in Formula 2 leads to , %100w
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the weight vector based on 100% confidence in the views.  , , and are 

illustrated in Figure 2. 

mktw ŵ %100w

FIGURE 2  Portfolio Allocations Based on , , and  mktw ŵ %100w
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When an asset is only named in one view, the vector of recommended portfolio 

weights based on 100% confidence ( ) enables one to calculate an intuitive 0% to 

100% level of confidence for each view.  In order to do so, one must solve the 

unconstrained maximization problem twice: once using  and once using .  

The New Combined Return Vector ( ) based on the covariance matrix of the error 

term ( ) leads to vector , while the New Combined Return Vector ( ) based 

on 100% confidence leads to vector .  The departures of these new weight vectors 

from the vector of market capitalization weights ( ) are 

%100w

][RE ][ %100RE

][RE

Ω ŵ ][ %100RE

%100w

mktw mktww−ˆ and , 

respectively.  It is then possible to determine the implied level of confidence in the views 

by dividing each weight difference (

mktww −%100

mktww−ˆ ) by the corresponding maximum weight 

difference ( ). mktww −%100
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The implied level of confidence in a view, based on the scaled variance of the 

individual view portfolios derived in Table 4, is in the final column of Table 7.  The 

implied confidence levels of View 1, View 2, and View 3 in the example are 32.94%, 

43.06%, and 33.02%, respectively. Only using the scaled variance of each individual 

view portfolio to determine the diagonal elements of Ω  ignores the stated confidence 

levels of 25%, 50%, and 65%. 

Table 7  Implied Confidence Level of Views 

Asset Class 

Market 
Capitalization 

Weights 
mktw  

New   
Weight 

ŵ  
Difference 

mktww −ˆ  

New 
Weights  

(Based on 
100% 

Confidence) 
%100ŵ  

Difference 
mktww −%100ˆ  

Implied 
Confidence 

Level 

mkt

mkt
ww

ww
−

−

%100ˆ
ˆ

 

US Bonds  19.34%  29.88%  10.54%  43.82%  24.48%  43.06% 
Int’l Bonds  26.13%  15.59%  -10.54%  1.65%  -24.48%  43.06% 

US Large Growth  12.09%  9.35%  -2.73%  3.81%  -8.28%  33.02% 
US Large Value  12.09%  14.82%  2.73%  20.37%  8.28%  33.02% 

US Small Growth  1.34%  1.04%  -0.30%  0.42%  -0.92%  33.02% 
US Small Value  1.34%  1.65%  0.30%  2.26%  0.92%  33.02% 
Int’l Dev. Equity  24.18%  27.81%  3.63%  35.21%  11.03%  32.94% 

Int’l Emerg. Equity  3.49%  3.49%  --  3.49%  --  -- 

 

Given the discrepancy between the stated confidence levels and the implied 

confidence levels, one could experiment with different ω ’s, and recalculate the New 

Combined Return Vector ( ) and the new set of recommended portfolio weights.  I 

believe there is a better method. 

][RE

3.2 The New Method – An Intuitive Approach 

I propose that the diagonal elements of Ω  be derived in a manner that is based on 

the user-specified confidence levels and that results in portfolio tilts, which approximate 

 multiplied by the user-specified confidence level (C ).   mktww −%100

  (10) ( kmktk CwwTilt *%100 −≈ )

where 
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kTilt  is the approximate tilt caused by the kth view (N x 1 column vector); and, 

kC  is the confidence in the kth view. 

Furthermore, in the absence of other views, the approximate recommended weight vector 

resulting from the view is: 

  (11) kmktk Tiltww +≈,%

where 
 

,%kw  is the target weight vector based on the tilt caused by the kth view (N x 1 
column vector).  

 

The steps of the procedure are as follows. 

1. For each view (k), calculate the New Combined Return Vector ( ) using 

the Black-Litterman formula under 100% certainty, treating each view as if it was 

the only view.   

][ %100RE

( ) ( )Π−ΣΣ+Π=
−

kkkkkk pQpppRE
1

%100,
''][ ττ  (12) 

where 

][ %100,kRE is the Expected Return Vector based on 100% confidence in the 
kth view (N x 1column vector); 

kp  identifies the assets involved in the kth view (1 x N row vector); 
and, 

kQ  is the kth View (1 x 1).* 
 

*Note:  If the view in question is an absolute view and the view is specified as a 
total return rather than an excess return, subtract the risk-free rate from . kQ
 

2. Calculate , the weight vector based on 100% confidence in the kth view, 

using the unconstrained maximization formula. 

%100,kw

( ) ][ %100,
1

%100, kk REw −Σ= λ  (13) 
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3. Calculate (pair-wise subtraction) the maximum departures from the market 

capitalization weights caused by 100% confidence in the kth view. 

mktkk wwD −= %100,%100,  (14) 

where 

%100,kD  is the departure from market capitalization weight based on 100% 
confidence in kth view (N x 1 column vector). 

 

Note:  The asset classes of that are not part of the kth view retain their 
original weight leading to a value of 0 for the elements of  that are not part 
of the kth view. 

%100,kw

%100,kD

 
4. Multiply (pair-wise multiplication) the N elements of by the user-specified 

confidence ( ) in the kth view to estimate the desired tilt caused by the kth view. 

%100,kD

kC

kkk CDTilt *%100,=  (15) 

where 

kTilt  is the desired tilt (active weights) caused by the kth view (N x 1 
column vector); and, 

kC  is an N x 1 column vector where the assets that are part of the view 
receive the user-specified confidence level of the kth view and the 
assets that are not part of the view are set to 0. 

 
5. Estimate (pair-wise addition) the target weight vector ( ) based on the tilt. ,%kw

  (16) kmktk Tiltww +=,%

6. Find the value of kω (the kth diagonal element of Ω ), representing the uncertainty 

in the kth view, that minimizes the sum of the squared differences between 

and . ,%kw kw

A STEP-BY-STEP GUIDE TO THE BLACK-LITTERMAN MODEL 25 



 

  (17) ( )
2

,%min∑ − kk ww

 subject to 0>kω  

where 

 [ ] ( )[ ] ( )[ ]kkkkkkk Qpppw 111
111 '' −−

−
−−−

+ΠΣ+Σ= Σ ωτωτλ  (18) 
 

Note:  If the view in question is an absolute view and the view is specified as a 
total return rather than an excess return, subtract the risk-free rate from .kQ 13

 
7. Repeat steps 1-6 for the K views, build a K x K diagonal Ωmatrix in which the 

diagonal elements of are the Ω kω  values calculated in step 6, and solve for the 

New Combined Return Vector ( ) using Formula 3, which is reproduced here 

as Formula 19. 

][RE

 ( )[ ] ( )[ ]QPPPRE 11111 ''][ −−−−− Ω+ΠΣΩ+Σ= ττ  (19) 

Throughout this process, the value of scalar (τ ) is held constant and does not 

affect the new Combined Return Vector ( ), which eliminates the difficulties 

associated with specifying it.  Despite the relative complexities of the steps for specifying 

the diagonal elements of , the key advantage of this new method is that it enables the 

user to determine the values of  based on an intuitive 0% to 100% confidence scale.  

Alternative methods for specifying the diagonal elements of 

][RE

Ω

Ω

Ω  require one to specify 

these abstract values directly.14  With this new method for specifying what was 

previously a very abstract mathematical parameter, the Black-Litterman model should be 

easier to use and more investors should be able to reap its benefits.   

Conclusion 
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This paper details the process of developing the inputs for the Black-Litterman 

model, which enables investors to combine their unique views with the Implied 

Equilibrium Return Vector to form a New Combined Return Vector.  The New 

Combined Return Vector leads to intuitive, well-diversified portfolios.  The two 

parameters of the Black-Litterman model that control the relative importance placed on 

the equilibrium returns vs. the view returns, the scalar (τ ) and the uncertainty in the 

views (Ω ), are very difficult to specify.  The Black-Litterman formula with 100% 

certainty in the views enables one to determine the implied confidence in a view.  Using 

this implied confidence framework, a new method for controlling the tilts and the final 

portfolio weights caused by the views is introduced.  The method asserts that the 

magnitude of the tilts should be controlled by the user-specified confidence level based 

on an intuitive 0% to 100% confidence level.  Overall, the Black-Litterman model 

overcomes the most-often cited weaknesses of mean-variance optimization (unintuitive, 

highly concentrated portfolios, input-sensitivity, and estimation error-maximization) 

helping users to realize the benefits of the Markowitz paradigm. Likewise, the proposed 

new method for incorporating user-specified confidence levels should increase the 

intuitiveness and the usability of the Black-Litterman model.   
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Notes 

1 The one possible exception to this is Robert Litterman’s book, Modern Investment 
Management: An Equilibrium Approach published in July 2003 (the initial draft of this 
paper was written in November 2001), although I believe most practitioners will find it 
difficult to tease out enough information to implement the model.  Chapter 6 of Litterman 
(2003) details the calculation of global equilibrium expected returns, including 
currencies; Chapter 7 presents a thorough discussion of the Black-Litterman Model; and, 
Chapter 13 applies the Black-Litterman framework to optimum active risk budgeting. 
 
2 Other important works on the model include Lee (2000), Satchell and Scowcroft (2000), 
and, for the mathematically inclined, Christodoulakis (2002).   
 
3 Many of the formulas in this paper require basic matrix algebra skills.  A sample 
spreadsheet is available from the author. Readers unfamiliar with matrix algebra will be 
surprised at how easy it is to solve for an unknown vector using Excel’s matrix functions 
(MMULT, TRANSPOSE, and MINVERSE).  For a primer on Excel matrix procedures, 
go to http://www.stanford.edu/~wfsharpe/mia/mat/mia_mat4.htm.   
 
4 Possible alternatives to market capitalization weights include a presumed efficient 
benchmark and float-adjusted capitalization weights. 
 
5 The implied risk aversion coefficient (λ ) for a portfolio can be estimated by dividing 
the expected excess return by the variance of the portfolio (Grinold and Kahn (1999)):   
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where  
 

 is the expected market (or benchmark) total return; 
is the risk-free rate; and, 

is the variance of the market (or benchmark) excess returns. 
 
6 Those who are interested in currencies are referred to Litterman (2003), Black and 
Litterman (1991, 1992), Black (1989a, 1989b), Grinold (1996), Meese and Crownover 
(1999), and Grinold and Meese (2000). 
 
7 Literature on the Black-Litterman Model often refers to the reverse-optimized Implied 
Equilibrium Return Vector (Π ) as the CAPM returns, which can be confusing.  CAPM 
returns based on regression-based betas can be significantly different from CAPM returns 
based on implied betas.  I use the procedure in Grinold and Kahn (1999) to calculate 
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implied betas.  Just as one is able to use the market capitalization weights and the 
covariance matrix to infer the Implied Equilibrium Return Vector, one can extract the 
vector of implied betas.  The implied betas are the betas of the N assets relative to the 
market capitalization-weighted portfolio.  As one would expect, the market 
capitalization-weighted beta of the portfolio is 1.   
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where 
 

 is the vector of implied betas; β
Σ

mktw
 is the covariance matrix of excess returns; 

 is the market capitalization weights; and, 

ββ
σ 1

2 1
−Σ

=Σ= Tmkt
T
mkt ww  is the variance of the market (or benchmark) excess returns. 

The vector of CAPM returns is the same as the vector of reverse optimized returns when 
the CAPM returns are based on implied betas relative to the market capitalization-
weighted portfolio. 
 
8 The intuitiveness of this is illustrated by examining View 2, a relative view involving 
two assets of equal size.  View 2 states that [ ] 222 ⋅ = + εQREp

[ ] [ ]USBondsBondslInt REREQ −= .'2

, where 
. View 2 is ( )22 ,~ ωQN .  In the absence of additional 

information, one can assume that the uncertainty of the view is proportional to the 
covariance matrix (Σ ).  However, since the view is describing the mean return 
differential rather than a single return differential, the uncertainty of the view should be 
considerably less than the uncertainty of a single return (or return differential) 
represented by the covariance matrix (Σ ).  Therefore, the investor’s views are 
represented by a distribution with a mean of  and a covariance structure Q Στ .   
 
9 This information was provided by Dr. Wai Lee in an e-mail. 
 
10 Satchell and Scowcroft (2000) include an advanced mathematical discussion of one 
method for establishing a conditional value for the scalar (τ ). 
 
11 The fact that only the weights of the assets that are subjects of views change from the 
original market capitalization weights is a criticism of the Black-Litterman Model.  
Critics argue that the weight of assets that are highly (negatively or positively) correlated 
with the asset(s) of the view should change.  I believe that the factors which lead to one’s 
view would also lead to a view for the other highly (negatively or positively) correlated 
assets and that it is better to make these views explicit. 
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12 The data in Table 8 is based on the implied betas (see Note 7) derived from the 
covariance matrix of historical excess returns and the mean-variance data of the market 
capitalization-weighted benchmark portfolio.  From Grinold and Kahn (1999): 
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Active Portfolio Beta  = ( −Pβ ) 
 

where 
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B

 is the expected return of the portfolio; 
 is the expected return of the benchmark market capitalization-weighted portfolio 
based on the New Combined Expected Return Vector ( ); 

 is the variance of the benchmark portfolio; and, σ
 is the variance of the portfolio. Pσ

 
13 Having just determined the weight vector associated with a specific view ( ) in Step 
6, it may be useful to calculate the active risk associated with the specific view in 
isolation.   
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where 
 

 is the active portfolio weights;  

 is the Weight Vector of the portfolio 
based on the kth view and user-specified confidence level; and, 

 is the covariance matrix of excess returns. 
 
14 Alternative approaches are explained in Fusai and Meucci (2003), Litterman (2003), 
and Zimmermann, Drobetz, and Oertmann (2002). 
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